波浪线绘制
本帖最后由 King、 于 2025-11-24 10:18 编辑**HXquO0vhveOj7Mqr2zOAlxBCAAATuQICvojtAvadlHQi9g/8zVz1fcT9ArvXdgQwEIPCNBOKNOZZFZJjcCctflOtBpIyCsHKZx5LNCvUGrydeKRd6eXqtV8nKlTNxaVQy6zvLq3wo6MnKqF1M6EspQxxLL/E4ZLF0ZcVqJ1AK+lV4uRd6vsoj05c1mJt4HPo+yUK8WesXqFhV0cuXahqBagkgAAEIPInA5pf9k+ai7ZyAHyA9nlX4AXKPfuZDHgIQ+C4C8do6fFxIcxRNFVZVmMRSzsprEjfpr+YqjC2v8tj1Hu/pK30YDpeRjFpvN4ylryDctFQQel/ONCLs4oh77boq9LX0pMebvSRYVIUmlLXUzxD3ZZRLUIF8FEigjIJeol/R0sRShWvC6kgAAQhA4J4E+Cq6J937eMdpcE8TlfCHxz240EAAAr8I6I32V/bfxXr3X1X+u6r6m7Fn4hmlrbLTMoJsNvpHtg4dVFh9w3a9dMPw0dJPBZ702nWXIRBZqTYMJehBGGrCrvRMNVpnfLdi7xWjqu8i3w0XVS7unrPCuK4ojOWwxaZGVVL2X7Y+nsQqJ4AABCDwJAL+Xf6kEWh7nIBOgztLj+p32iKDAAQg8EPgxJOk3ob1lhwctTvMq51eqZUJfSyHtm4in0gOl2GupUyU8UBWnqy4tnpeme6szMxW+U1z7yJbJT0YWg2TXhXxUF9J3/I4HGrpJcOxJRiWR1IOsyrlK4hylhCAAAS+gIC+Kb/gWj/oEnUa3Pm3xNJ/EAAuBQIQeH8Cev4o2HNNIY7lwmGhHG4Nkwv//VsL58XW0L/066oT55yF4bmtxfDDrUqemHzotpg59KVc66+aKlqzhAAEIPAmBNbfkW9yEV82po6COkOuAUi/lrELAQhAAAIQgAAEIAABCEBgQYDT4wLO627pT47DAyTHxde9c0wGAQhAAAIQgAAEIACBtyXA6fFtb92/g/cDJKfHf9nw7xCAAAQgAAEIQAACEIDAZQQ4PV6G8olGHCCfCJ/WEIAABCAAAQhAAAIQ+BICnB7f5kbriDj806J2f/4Rhv//19tcGINCAAIQgAAEIAABCEAAAu9AgNPjO9ylfw+EOiLqv/fo0/vuUOBiYghAAAIQgAAEIAABCEAAAocIcHo8hOvR4joExt8SdUocTsO5cYiFJAQgAAEIQAACEIAABCBwIwFOjzcCvG+5Dor9TBhHyvvOgTsEIAABCEAAAhCAAAQg8PUEOD2+7q+AHx376ZH/fuPr3jkmgwAEIAABCEAAAhCAwCcS4PT40nfVD5B9UP782JmQgQAEIAABCEAAAhCAAATuRIDT453AXmmrM2Q35QDZmZCBAAQgAAEIQAACEIAABO5BgNPjPahe7zk7QHJ6vJ41jhCAAAQgAAEIQAACEIDAiACnxxGVl8z1A2TPvOTgDAUBCEAAAhCAAAQgAAEIfAIBTo/vdBd1XPTgnS6AWSEAAQhAAAIQgAAEIACBtyXA6fH9bh1Hx/e7Z0wMAQh0AvH8iWXXDzOHqv78/TvTz/K96X6l1z6yyvvuic/NJucby+VzOjg0wCHx6ZEohAAEIPC5BPgefct7qwPkW07P0BCAAAR+/keHflOI5e/N/1Yhi+V/ulFUp8desjhVdptDYpX3ptqKwJUehyyW66k2d8Pt0PL0kD7V2qTvVq3/3Dlzt9pZiOwVCHD7XuEuMMPXE+CD+K6/AjpADv+nIN/1qpgbAhD4HgJxeIjljEM8tbxqVqKT6kI83Ipe8p/lSzCzGublqcDNq2RPoZTyUaAtd9ZuwZltuWwW7xmvajVJLCPfG0mwCHqVuvhWOXjmLeJbbtBbXOD+IY+iOKrfPwlKCHwrAT5Vb3znOUC+8c1jdAhAwN/jFfvxoCPSrrZUqMwwUOHsoTf0GSZ1Fh020mGsGslBwc7yMq8q/Zx1VFMX+ACzq5Z+JpjlVThs7bse60Jk2zOuV+yyih2j3KT3QPpKrsVeeC6+h//Cc7F1bv5DNzRa3GOYaHFivMdM1eckA4HPJcCn6o3vrU6Pb3wNjA4BCLw4AX9xv3ZUf633Lp6PjrGlqpD1pZR66FXgS8Vero6+O4tVqHZxyFHeHVRVgW95d89HiV6p5R+Zro+MzOWgIJR9qSFrK5ahj13vG0pfqkqBwHrGSzx2jTq64KrYG13o2a2q0Z3aHbW90zAL2/03MZQLzw6ZDAQgMCEQH6yJivRLEuA/s/qSt4WhIPBBBPw98qrHhXxkrlc6nXlmCF3pYnkOC1U1DKqktnq58t6i+0ShqjRklIReSxVWOy11WJKygrDty9APl72qdx8WrmeYlYjk5tXJYThhJCUeBi4eCm5M3sm/bGezrXdnVbO8X4Lu0Uzc8xcOo0mqS3fumT6PahV4lcezWvIQgMCEwIlviIkTaQhAAAIQ+CQC8YIVy9NXqseODCuovJLdX1szh15SGfl74Fs64w0dfDB3ULyokrNmnp0DNY8H1UIms0Yh84GHJWqhS5CD64dJF4RP31pn3N/59KqYU8uunGV2MpmVK+8zK6lgvSvZzmDTbVOws5HLynN9O1yv+MJhwiqW1XHPhF7o8foDpSsigAAEJgT2fP4mpaQhAAEIQOCDCfT3rUsutmwXP2ddoiSOYTGtTDzvcQmUUaDCCEqgQ8jOF9Cw9fLw1zwKJFbr2RPbBdJE68120TfwDst7yUImsTQadbOXK0Osa5ftMCgHMVFVOA9rPSkHType70q2M9h02xTsbOSy8jyKZefHwRst4n5dw8zCobb8KoYOLth0QwABCPxLgI/OvyT4dwhAAAIQcAL9fct3b4nLWT/LKpbdX4J6cNVSslj2vJdH3N99w016jRpnmN5OStV6IL0HeiC7smKX9ViaYaEne21lXOPxTO+XX3ox1FWo1g1DPNQoWUEvn2WiMJazqj5wFGopB2UiKEEkzy03ewn4Of9Z1Z6+w9q7Xns375mYKgS19HsdgihnCQEIzAn4J2muYgcCEIAABL6KgL9s3eM1y/39PXjWS3oPdEfqUda3PNPjdd/SVwvValm1GkCBK2Mq1Q4fvCr0ILr0QhfvjH2MPSW6tAjWtWtxXFcfaV3uHDzerNLM3lFV2lWgLf2qaKsCF0gTyXPLoX9YLTQ+p6qk1662FCy2pBkGMo9dGbogkr5V5Z7xWObDpHYXv2Dd36uIIQCBHQQW37s7qpFAAAIQgMBHEqiXs/h57ZXq/U9dFu/fLpZMhT3QqNpSVW3V089t43moQld6UrXqJWeV+Fus10aJCmNILRe1vuWXoPEURFPlFfgYIe7Lquq1PsOiyrdk5cmI3Vb66B4lm/SiPGy1LFstPYiOtRXJc8s9VjONT+ianneqcZlHx/ZGqu0do0sIVOjBwtllEfdLc8HQ0wXEEIDAnMD64zWvYwcCEIAABD6YgL/V1WVe+77l/u4c+SDsu34wC1ks9aDzco91zBgWVrnrPY4Stzpa6LWy9V66EO16UEphkVh5F1fsE2pXhcN5XOZKGfakSmQYF+VLF3vsmohdtoirygWbmU2Bu+nqPBmj+tJlPe6td2rUovTus9iSeWh0Ucp7oCrJPNOT/rtRPtLH8nS+Cmdue3bVmgACEJgQ8I/yREIaAhCAAAS+jYDeEXXh6xcyyfYEMt8TuKHrPV/xbEKv8tjfbme1pZFSz8yF3ku8UCUKFpdQGv2Uz6xESg/WWOQZJbpGCXrT2VZZDfV9mGi0qFI799fY60Lv6+Xy9PKjAq9dGGpUD6I2ljFJ7NZyqImkOi7Gc3PXexflPeiFnukdq9ZtpfetSPrvSWxpGcGwpDSaP0pYQgACuwksPmG7PRBCAAIQgMCHEejvWD1z7pL1mihDBf1101tItnDQVi8M83r6Sa/AC72kBJIpCL2WEkQj95S4Am/h5d1BhcMSuSmYPep7ufrurHWZ3Co5/OmTqJeCYcmwhXq54f5yeUZJTBLLxb2T4c55om9f6gL7ljJ9vOGEkilYOOzpq3IPZuYOxDUeD8eeJatplK8n2b/rSmIIQGBCwD/WEwlpCEAAAhD4NgL1cuaPiJ45wcTf+RQrWLwvqnuN5EsvH44kwZ4gHLyRxpNPiH0pjRi6lZIq8V0lK1hs1UjDwdRCk4Rt1GpXhbLVlgc+VcQui1jmFfjPUMbSW2hrcWnS6CrUK4KuXGTWHde7brsn3nQbCirZf4qDt+4OKnTZnnhhJU/XeLyYrW5WHyDKXbC5NfN0E2IIQGBOgM/QnA07EIAABL6ZQLyE1fLCh4b7K1bQyUfrWi70cpCmAv0swdqn70a5ukSgaT3QJCH2SfrWukpv3hpMgWw1Q5hL6QJPVhxVbiuxNG6lpILalW0vlzICKXsQyr5UO7HywPWulMavKAReK30kTy/XvWbtFlV9a5bxS945/1Gr0K+XdbE+Sehjy5eKe8mJy5QbAQS+mAAfnS+++Vw6BCAAgQWBeNlaLxc+sy03VKxgVqWX5lLWQ2z9KJOnSpRRl8jIUP7K9BdZmfiW9Ao0uetnsc/jsbdQrQ9ZYi/xWCXy6XrNqS2vqlgdtaXLVKAtD7rnbDyv6iNpgHU7L5ThojaGiaXcymq9q3a3BOur6wPEhJpTQRh2h8qEbM8ldKtDw0T5ejl0nl2jht/0lJIAAhBYEjjxDbH0YxMCEIAABD6DwObLVglOP0a6/+KlsJBGRzkoGJLXrsqVkT4yrqypQjm76iiM2r6UrQI5VCaW3aEEla+plHEH+SvwS1AXT0rZAzXSlgqjuwQVxK76hmy4VFNVhdusymeTZlgbyVg65IjLtuvV7lywNhzuRrKWjs4nCbEuSsRcvI67ldxU6BqPQxlbsduX8q8tXyre9JSSAAIQ2CJw4htiy5J9CEAAAhD4AAL1vuXvnf2J4Zqjlxzvc94orNTFB1D5cLc7+EunfDxQXLVuq61oGl3UQjJ/nS0T3/Jyb6e8xArcMNpJo8AvRJ5KRibc+q4y7t/JyEd6BV4YsthSiQel6T9dE3G33XkXNJ4usJxlqMA7ajZP3hgPG8Uw0cJLZvHM4fQleCPN424hWCxVFcFs5minpQdhpaVriCEAgX0E4ntxXxEqCEAAAhD4BgJ6x5o9KyQ4SqMXKjPsVbvexfUeuybibuKHhOgrsfIKvCpaaEt5zdYz3bBrKuMmUbUW9HmGmd5XHcUhNOqrwJUeq7Bau15baqdMD3ThEkcQJdr1vJJym+0eErhtxW57Y9wn6e1CI4FaK6PxPKPfCk+Gp6wiiJKo8l0VRnKxjC3NKSsPSuwZxe7jsQQEEIDAbgLxKd9dhxACEIAABCCwfplb8NELnGuGSRcolrKCynsspQczwTpfu/1pqXwvl9g1mmSY1O4M6brKd9W9PGtr078L3FO74eZL7+uxahXIWRldtW8p3h+EoS8Vy00ZBbWl5esEa56vM+e9J1ncoMXWvafCHwJfRoAvpC+74VwuBCAAgcsJnHiSDF/1KrnTbSgbJnW9w6Y6t0jmgUYaOq93y2dY6C16vCiZXUJdhX6656LEZRHPZgg3l83i7uxK3+08PROtvbDHsxZ7bnd3I/MiBM7d1hcZnjEg8CkEFh/ET7lErgMCEIAABF6QwPD5M0xeOPzMf5YfnscunOeE1WLUE24nSm4c4MbyEwP3kuEMflLtJWRegcDwxr3CYMwAgW8iwAfxm+421woBCEAAAhCAAAQgAAEIQOAsAU6PZ8lRBwEIQAACEIAABCAAAQhA4JsIcHr8prvNtUIAAhCAAAQgAAEIQAACEDhLgNPjWXLUQQACEIAABCAAAQhAAAIQ+CYCnB6/6W5zrRCAAAQgAAEIQAACEIAABM4S4PR4lhx1EIAABCAAAQhAAAIQgAAEvokAp8dvuttcKwQgAAEIQAACEIAABCAAgbMEOD2eJUcdBCAAAQhAAAIQgAAEIACBbyLA6fGb7jbXCgEIQAACEIAABCAAAQhA4CwBTo9nyVEHAQhAAAIQgAAEIAABCEDgmwhwevymu821QgACEHhZAn/+/t3zRNqjmV3jLbV/9403a70/PxxymHTPEOyEWQ4Lcdh6x4gXJqH05X7/qDpX6CbEEIAABCBwigBfwKewUQQBCEAAAjcS6OeNPU+ktWZzdy1YX1EfeK2f7a59hrubY4egTCLZ55Fs2LQOzJsmZSur3mWRmfXtJa5Ur52zdTcyEIAABCBwlgBfvWfJUQcBCEAAArcQ0BlAJn5CUDKCqPKS2IrCxVlo55PQe3XzntE8w6DrK9O7qHxW0i+tmwxr5TwjMPQZJjf/NruomnX3maO8lnsK3YQYAhCAAARuJsBX780IMYAABCDwkQT0gh7BhRcbj6BYzhr5PDo4KTmrktIFqtrTusRePovdNuJZifK9S89IrCDmV1MJhoGce3npJYjyYT5MokT8SyZxD3qharXlVYq1SwABCEAAAncjwJfu3dBiDAEIQOCtCegEEsGFFxWPoFh6o5ghlq5cxFEVy0VhbYW+lsMqbSno559hYcliy01iq5YlcJkyQ72SAl6BHDyvWFW6Fuk1hm+5XrFKNGEEUkagwsprqshHFUsIQAACELiagL6ArzbGDwIQgAAE3ppAvNZf/preDddPJM2jI0rhXVdJrHIFujt9Em15oMIIXBOxO3scMl/W5fhFqdCTwxLVRuBixXEVfSl0KvHAW/RazewlFa8Lu77G8NrIlOGwkCQEIAABCFxNgC/dq4niBwEIQOAzCMTzYXEeOHe93TA6dlsJvFbJrlemNF7lW3sc1kcpuUXgHT0OmZbSaCRlZgNIUIGWM7330jFM7WpXJgpUFYE3jTiUsezOPaMSjReBOkpJAAEIQAACdyagb+I798EeAhCAAATei4A/HxZv9qcvKjxjObSVRrMpU/paajdMtKsqZULpS7mpSr1cNoy9xOMu1iQe9BOghpGDMvJXppd7Vcgk1gDKqKoysZRPBRrDZRGrRQQhq6UMQ6zlsIokBCAAAQjch4C+9e9jjysEIAABCHwAAb3BX3gt4RnLWSOdGTYDd9gULx6GfigKH28xjEtfW4plohJlhoGXy6QnNadsXePJYZee3Dw9qkSNIlDT9djhoyq5SRBBKFlCAAIQgMD9CSwemPdvTgcIQAACEHh9AvHqf9XAYRvL6BLHBi11wvGM1yqvoHZj6SURS9mD/cpeWxk5xNlvple+CmWivHw8o9jbKVmBtoTUg8Wu3iPc0PUV+65il8knkhK7oJKaUEuvJYYABCAAgTsQ8C/jO9hjCQEIQAAC707gTq/mYRvLDk0CBaXRcyzyclBegU4d0iyCqvLaRbmLPV6UqLVaRKALLGVfDhvJpFqri4KhoMy1pUBVupDamv10fcWy8hLfiuuSQ9cPZ5CeAAIQgAAE7klg9m19z554QwACEIDAGxHQe/+1M8epYH+XXliDLRz8UBTle2rjUbloFIhc6XHIYgYpo69OTVFeelXF7mzpVcN41k75XlVbi46L2vX8QuFNq5G2Zn3JQwACEIDAdQT40r2OJU4QgAAEPpLA+rX+9CXX88cPA4tGXeaZmuFEuYbfrJVS5x/PzGK39Xiol8CDUlZGP73cxf2RPixRuXaHwfpKdftcpmHUIgIJPJCmz19bw/EkViAfAghAAAIQuBsBvnTvhhZjCEAAAh9AQG/5116LbD2oc8iskSsjrhIlu0M961zgsZ9/hrUljp9d2TP+jI2OQ7Fa1K6WHnhh5H3ZYy+U/zCo2gUWN3eZX29vF8q4KWoahd7L/Wf5KGcJAQhAAAKXEvBv4kuNMYMABCAAgQ8gMHunv/HS/OGjY0CdLhbOft5Qlaxmo7pyKJZg2Fq7PRjqlSz9bKl8BOqis9ZwZlUNu7iJlD1w59qNTJjLoWS+e6Kj93IrddFIw92dHcONJQQgAAEI3EZAX9632VANAQhAAAIfSWD44n7jlXZPZRQMW9Ru/JRyVht6P/nElqwUdE8vl2wYxAO2W82qZlNtOkggh2ELJTWh9MqURoYqUV6HW23NxBL4/3fAxR67uMeurDgG7iVkIAABCEDgUgJ8716KEzMIQAACH0bA39f90m55d+9PHs+sO/qhJZSx1LQy18zKSDMLSim9t1ByWOvKEvRML5SmAi03HUKvsRdDuvlM7xqRV9LNNUC/qF6ojMRupaQH8pdSY5RMea8ihgAEIACBqwnwdXs1UfwgAAEIfBKBeEf3S9MLvSc3424YmViWoXopUF4dF4XS6Nyy5+knQ4m9u3bdXLFKPNOT2q3APUvsJb6rQo0kpWTaktgDyYqJyGiSyGgp2+iovHeRW+wOu/fCKJdAcHwG7RJAAAIQgMDdCOh7924dMIYABCAAgfcl4G/5/SriSNAFPROPnaF/2EqjfD886GwTHaOddmWlTA+ibwmUnHWc5b2w96qqntecClyjpF+mw5HAqxSrahgMayvp0yqjC5ebGmlLGZlLrEAaVcWWL9Xdk+5ADAEIQAAClxLg6/ZSnJhBAAIQ+DACejufXdemwAv7M6dn/MxQu67xdj3vGfn4ABGXm/+UIBrJuee1VbUukNvmMGHiVjNDadSllP5zs+9MECZqIX0NLJkEPaM5/Rq7TJkK3FCxuveMm/suMQQgAAEIXEqAr9tLcWIGAQhA4AsJ7H+ShDLOCTvRlUnU6uzhJtHOtxQPC/spRVYKymG9VJduuGcrrtFLZvGwJIaM2mGJBh7WVnJYWEn99F6yGu6qo5dELIeen22FkiUEIAABCNxGgK/b2/hRDQEIQAAC+wn4M2d49jhnVVVuvt9npjzntq6a7c7ydaCaTXhhfjbAIr+4fYstzTxzluBEcA/PE2NQAgEIQOCjCfBd+9G3l4uDwFMJ/LF/PXUQmkMAAhCAAAQgAAEIXECA0+MFELGAAAQ6ATs5/hN2DRkIQAACEIAABCAAgTci8Gmnxz9/Pu2K3uiXiVEh4ATqyKhMLJUngAAEIAABCEAAAhB4FwKfc9bSHzreBT1zQuADCCzOhPH/ylkoP4ADlwABCEAAAhCAAAS+gcA7nR4Xb586OsYL6zfcQq4RAk8kMPtUDvPD5BOHpzUEIAABCEAAAhCAwCECH3J6rGvm3fTQvUcMgdsJzD50lff/b07P3N4dBwhAAAIQgAAEIACBRxLg9PhI2vSCwDsR8LPfcO7FgbBv9czQkyQEIAABCEAAAhCAwMsSeJvT455Xz9K8LGsGg8C7EPCPm2I/THrS48UFSrbQsAUBCEAAAhCAAAQg8MoEXuX0WC+mi/fLxZb4lkZLAghA4DQBfeLWn839H7r9ytMzUwgBCEAAAhCAAAQgcFcCTz49+htqxLrsyGspgYLaiuXPu+/v/5PDc4OYSsvnTuXdNZIHLnhu7FN5/Nyp1N1H8liCpwfDqQYfn39TNfC/q3/+fZgMzd+/f3fKeiEZCEDrKNSBAAATRElEQVQAAhCAAAQgAIHXIfDk02OB0Gu0uPh/Rm6mkVjB3jdUHSZV+chgs/um4N7TrgdY7957tv8fRP459sx6PXfCze6bgtl1XZXfN0D/NPXP6c5j4bDwqqvB59MIHHooHRI/ndSJaU+UPP0yGeA1CTz+d+nxHV+TPFNB4OMIvMSHe/ieGqj3vIB2nzDJZb1GZ/Zu66PtjupvH/xQx0Pi22fTuXG/1YMnPNruqH7/hc+URzr2T9PwM9hlvfkeTa8i840E/vz9e+ihdKN4s7wLasL4ufNWdbfNwkNA5H+o6uer1bDLZDGb60tWmfi5cKimXeDdPe5Kz8zmcc067g5r/Tvu7ud51dWtO653r5oBHwhA4A4EXuLj218uZ5n+N0ln0qt8dxr/eQiE011OF04veLJxrtG5qskIq/TpRqcLV9O0vdNdThe2ETYSBxsNP0092TMxxqYg9Cy/moCOHzspHHrp79/0m+WaZxEMR+294pB2YZWsvKkPLMEscA4ez/S6Fu8S8aLWy0N27hLUWm49o61hcFQ/NLk96Zd/u1s41DVG8q7LRcfF1l1HwhwCELiCwF2/q/YO2N8vZ5m7nB5/nmR35nCj/43le+7DLS1uqd0z2+036N4T3uh/Y/kehsdb9M/g/+/DT9obDmUh8CUxBJJAvEf++v1Kba4PievQ4hbR2rcqLsHwZ7nNBhjm97TTDHLwKiUlU6Ahh5NLNgyihS+Hel27mipQ91mhaocCby1PT25WaYAFq5nJMH9tMi5quLy2Y7ltMrxT04XtU0ZazMMWBCCwm8DR79fdxkeE/QW0Mv6e2jO9Q/fpmmnm9zvxVHZi4xLnS0xmw99ufrvDbLafV40rfksvMRkOeYnzJSbD8c4CHH6aerJnfIq+6x9qVxK/KIF4u71qyrD198j9H3ev0mDr8iiJpUwUuEDOSiqQ3oO+6xm5eYmfrFxQhfoZJbV08/Bxq14bhV7bxcrIU+UKykHKHrgydmXrYyz0Vd4FPRON+tJb991bMjXM+uct/ntqTwDZY7vQ7Ol4P+aLwdiCAARuJvASn93hK2Yka7l+9YySw3Du8QZ/oeeFVo7mKturfHy2nxeI635FL7TSkBd6Xmil8W4A2D9Nw89gyPwTGlv/n+Un59MRvzSBeP+78NaFs1PY06XKFz/d0OMwX4xRVYsW2nJ/jyVQU7XTluu9o85OUiroJVHYlxpgWKuptNsz2nJzjTQLoipqZ7vK+xiblyBzBV7isfwj2KOJkv3Lbu5Xt9/ntDLa6ZadNlwXzvyDQ0y19mQXAhB4GQLxUX7OXHveMkuzfvXsPoev59pX22vdbjgJTDlcO+G1blzv9Lbt3rjhjvRPU8/EgdAFHmvcYVK7BK9FoL/YPeBx4U17O72SzoJNgvKswNsNa083Kjfv0q2GHevcWD9VIjfNH7W6kAjCIapk2/MqHHb03Yi7VWRKH8laqpdzE4pZiQyHk3hy6KCkuitz10BjP6CLQ+jxtQN0/8hEu9qNJEsIQOC1CTz4+3IMI94paxkHxUhGSfkOk+OWi+wNL9y/XK/y+WXK3+ICx/HlVfflKp+4ggttb7PSJ64+iVrGvH6A9M+s9D3oDmRekUB/q+uZy+eOF83+gFLGh1FyMU93loNvdQc3V0nJYtlrXaYu6+NQlLjnop22IlBTv4qhpyt77CWaUEk11VZkpFxfu4ZUeUziPtFLSrVQRkEv94y6e/J+cU11b39dewTX9g3zzaV3L7FniCEAgZcn8ODvyzGPer/UXiwrr3dQLaVXMCzU7oHgttfun0a3OyzGvcT8EpPhkJc4X2IyHO+Su/Pi411xjfo0xUevQ5WA02OH88aZ/lbXM5dc3vBdU2eAYQuV1O5iMCk98CrPD5+HIRgufcgSRMY71qW5QLtKDrt0ZxXW5L1KhrPAPVUu21mVBCqZBeEgWeSdiTQKuliZ0HQOpRzeWZl0TdmG4NplTH6teXx89lz+jQM4MY83bQ+JN90QQAACDyHwgC+V7evQ2+fPN96//+pl/+788+8h8N3YOrO85XhwS+3OWW9scWP55pA3+t9Yvjne/3/P9qjGmhcf78ar+/ea6wP174p//0oC8YJ7yXuePBdBwV60U61uy+JRJh8F4R9591SjCKTpgZR6g9dsaqSMyodVSnqgEgW+W87KuEaxgpDV0ncVe6CqYeDKHqsktpT3oABK2aGJsGvKQZkKhrVd492HPlFyy1L+e2a7pNEtJodqdWk7q+5NYOcYyCAAgd0EXuJT6we/zXdW//uGLrM7DGXS7wrOHRLOVe0a6LfodKPThb/7b6xOdzlduDFQ2z7X6FxVa76dON3odOHvmTY/ib/lrD6RwJ1epsPWyfl7p8ddIxNtzfQl8N167unp51tyU5WfYaRUEHpVeYtoVLVKuoO2FPRdz3i7GElLWfWOPuTsJNbbCYgMo9ewxEftAh9SthrJd6NWrd0/kho4amO56BLKS5YaUn0vse0matS37pE50e5EyT0mxxMCENhNwL+ndxddLXzd99SjL+JH9TeSPNHuRMnpIU/0OlFyeryfV4qDv/9H9bfMdmK8cyWTIfX/kZnsk/4aAnq7Pfhx2QbUDf09su+Wo+dD78to71cxjEPvy6F+0auOKxIMy91f8VAZSYkVFBDH4gNE3qt6oWaWg/Q9iMF82cWVcf/QqNzzSm5ehQbuF1VbbjuMZy2G4tuTjmLzMk+3k7M7DJMuuCX263KfBd5ZiZcTQwACr0Rg8YF+3Jive3r8eer82XXG2Cm7HOr+vvuVFw65v+l+5YXjcX8nMHV0fOnP5mR40lcS0Ivm5W94cvZx/YnksTQ9qYwMh6PGbizlPwxcLIH6KhOBV1VcgnWhlFG+WStbL1SVdpWpIE5W6h55iT3ojaoqevUSz3is7u4sNwW9pOuV2RxJbkN/7V4e6GLl3DPaOh2Iwyw47TwsnHVZX9p6d9iIJAQg8FQCD/6+zGt9m5fUxdlmsZWXe7f1eob17t2G+s94PcB69z+Xe0aLGRZb95zol/d6hvXuLyMWEDhCwN/q9F54xGClrYePP4K83fD00gVevj4nqNYvxOPFrJJFsCjR/F5S+pg5TErv19IzUdLFwVYOvVBzajaNp2BYpaZ+gYo3S7pAQ7pJJGdVLpNGPtrV1jDYvN5h1enkcKprZwgCWp6eeV0o/1kwKy/9bJc8BCDwegSu/a46fH1vc3qsK6vX9Ph5+KLvVhCDaXm3hseMNU8Ex1zuqY7BannPhse8h+M9+D9Me2xi1G9OIN7qYnnLxclKgU4jZet5ZaJjafQQUxAylZfgUJXXqlA+w0Ze4helqkNzyk1WvTwG01Se71Uu81hKBdqNIPxLX8lQaqkSZSpQvjdd20Y7L9eWgmgaS6+NrXssd051S+veomdu8Y9aAVQgwaJvbfUS1RJAAAKvR4CP7OvdEyaCAAQg8HQC/YXvqvc8OYeh8jopdQj1yNKDa09JmQxLqlHvEhnNqWCzUINFX+WjhZYSKBANWUmsYLhVDsMtFcaFqKkCV0YsjRopCKUvVeXJGMO31p7hFhdby9C4ucdR61v3iHdOdbr1kNv9mrpzJ+m7cUWLrVCyhAAEXoZA/5S/zGgMAgEIQAACzyLQ3+oq4w8Nj3fOKZNhIJPevbZU5cvNKj+cuHO4yScCySIImS9dqXwltYygYEqjQKfH0M+WuimaYaasvPS+9O6zcvlHMNPLPzp2vXf3eK30u+zKtYOUm1MdvRFyHgb7p9ozWG8x9N+0GlZ188hEVXSJ3XVt7LKEAARekkB8yl9yRoaCAAQgAIEHE+jvfJGpZSQ3hxxWdZOe8Xd3362HmB5lvqVhtBsHjBL7rko8kCwC1yiW5lAvVWmYyoStlsPATTwucRjKQR2VcdSejFiG3mvo5oWq8qRit9IY7umxC1QoKwVRonwEe2Tqskcc/rFcc5BYHZXZE8yqNseeFS6ads/IrK90vbvoyxYEIPA8AvEpf94gdIYABCAAgdchoPfIekpo6RMqeehJ0sV6g9SWMr2dzgyxVctFoS5ESgXq656K/TI9liCCrvGpZr1UVW69xDPeUYUuUNwDry2YyoSVL6VR4LseSzALOgEv124l43Zrt8yj0HcVK5jNI6su6LXesev3Z3R165Jz7Wbm/XJ6d3XsWzsz6iIrZbrDYquLyUAAAq9BgA/ua9wHpoAABCDwagT85U9xDDnLh2yxLAcJZoaRHy7LJB5rWnpJxd5UcQ9C7OcZ91ShktU6ymOpKrdV7GLZ9hJdowqlkYMCbUks53XghartSW35VC6LSdRUmshoGYVqVIWx61VyVonvbsZe7g6RP7SMaRe1Gm+h8a2Zs3wi8NqKZw5d2TNh7suZuOfJQAACr01g9u3+2lMzHQQgAAEIPIzA+m1yvbs5ZC/vmdkreyn1c9hLTznJuv8sEyXrpXfvytluz1dGDhIoU4HnPdb1RjKqalfJXqVyD2KGPUsvV9zbKSNPif3uS1a7ml/LYZUnw03tIoiSWEbf2N2zPORwVFwDxBUtln3gQx29fH/hfqX7E0MAAi9AIL6JX2AiRoAABCAAgfcicPpJMnyDHCbrpb9jKbF+hiAGW8j6ljI9iC59WX2rcLgrz9jVwMPaYdIdZoJFO3V0n0Usqx4sqmJLtZHX0a7nZ1uL+avL0Or25KLvTvNDDofEGuA0gXPtqu+e2sUvgIYngAAEXpXAnk/5q87OXBCAAAQg8NYEZo+gWf7oxXafnjnquV9/S69bamcTDj2HyZnDhflzfY9WHdVfeIFYrQlwa9Z82IXACxPg4/vCN4fRIAABCEAAAhCAAAQgAAEIvAwBTo8vcysYBAIQgAAE/td+HdMAAAAwCPPvGhscdbB0FwQIECBAgACBsYB6HJ9jGgECBAgQIECAAAECBDYC6nFzhSEECBAgQIAAAQIECBAYC6jH8TmmESBAgAABAgQIECBAYCOgHjdXGEKAAAECBAgQIECAAIGxgHocn2MaAQIECBAgQIAAAQIENgLqcXOFIQQIECBAgAABAgQIEBgLqMfxOaYRIECAAAECBAgQIEBgI6AeN1cYQoAAAQIECBAgQIAAgbGAehyfYxoBAgQIECBAgAABAgQ2Aupxc4UhBAgQIECAAAECBAgQGAuox/E5phEgQIAAAQIECBAgQGAjoB43VxhCgAABAgQIECBAgACBsYB6HJ9jGgECBAgQIECAAAECBDYC6nFzhSEECBAgQIAAAQIECBAYC6jH8TmmESBAgAABAgQIECBAYCOgHjdXGEKAAAECBAgQIECAAIGxgHocn2MaAQIECBAgQIAAAQIENgLqcXOFIQQIECBAgAABAgQIEBgLqMfxOaYRIECAAAECBAgQIEBgI6AeN1cYQoAAAQIECBAgQIAAgbGAehyfYxoBAgQIECBAgAABAgQ2Aupxc4UhBAgQIECAAAECBAgQGAuox/E5phEgQIAAAQIECBAgQGAjoB43VxhCgAABAgQIECBAgACBsYB6HJ9jGgECBAgQIECAAAECBDYC6nFzhSEECBAgQIAAAQIECBAYC6jH8TmmESBAgAABAgQIECBAYCOgHjdXGEKAAAECBAgQIECAAIGxgHocn2MaAQIECBAgQIAAAQIENgLqcXOFIQQIECBAgAABAgQIEBgLqMfxOaYRIECAAAECBAgQIEBgI6AeN1cYQoAAAQIECBAgQIAAgbGAehyfYxoBAgQIECBAgAABAgQ2Aupxc4UhBAgQIECAAAECBAgQGAuox/E5phEgQIAAAQIECBAgQGAjoB43VxhCgAABAgQIECBAgACBsYB6HJ9jGgECBAgQIECAAAECBDYC6nFzhSEECBAgQIAAAQIECBAYC6jH8TmmESBAgAABAgQIECBAYCOgHjdXGEKAAAECBAgQIECAAIGxgHocn2MaAQIECBAgQIAAAQIENgLqcXOFIQQIECBAgAABAgQIEBgLqMfxOaYRIECAAAECBAgQIEBgI6AeN1cYQoAAAQIECBAgQIAAgbGAehyfYxoBAgQIECBAgAABAgQ2Aupxc4UhBAgQIECAAAECBAgQGAuox/E5phEgQIAAAQIECBAgQGAjoB43VxhCgAABAgQIECBAgACBsYB6HJ9jGgECBAgQIECAAAECBDYC6nFzhSEECBAgQIAAAQIECBAYC6jH8TmmESBAgAABAgQIECBAYCOgHjdXGEKAAAECBAgQIECAAIGxgHocn2MaAQIECBAgQIAAAQIENgLqcXOFIQQIECBAgAABAgQIEBgLqMfxOaYRIECAAAECBAgQIEBgI6AeN1cYQoAAAQIECBAgQIAAgbGAehyfYxoBAgQIECBAgAABAgQ2Aupxc4UhBAgQIECAAAECBAgQGAuox/E5phEgQIAAAQIECBAgQGAjoB43VxhCgAABAgQIECBAgACBsYB6HJ9jGgECBAgQIECAAAECBDYC6nFzhSEECBAgQIAAAQIECBAYC6jH8TmmESBAgAABAgQIECBAYCOgHjdXGEKAAAECBAgQIECAAIGxgHocn2MaAQIECBAgQIAAAQIENgLqcXOFIQQIECBAgAABAgQIEBgLBDoPtDoNGDuzAAAAAElFTkSuQmCC
自己写个半成品,在慢慢写
(defun c:tt ( / )
(setq mspace (vla-get-modelspace(vla-get-activedocument(vlax-get-acad-object))))
(setq bulge1 0.198912) ;起始点和终点处凸度
(setq bulge2 0.414214) ;中间点凸度
(setq len 0.54852814);一个波峰到波谷距离
(setq h -0.3) ;深度
(setq p1 (getpoint "\n请输入起点: "))
(setq p2 (getpoint p1 "\n请输入终点: "))
(setq len1 (distance p1 p2));计算起点到终点的长度
(setq ang (angle p1 p2));计算起点到终点的角度
(setq n (fix (/ len1 len)));最大波数
(setq len2 (* len n));最大波数需要的长度
(setq len3 (/ (- len1 len2) 2));计算起点偏移长度
(setq newp1 (polar p1 ang len3));计算起点偏移点坐标
(setq startpt newp1);起点坐标
(setq nn n);保存原始n值
(setq ptlst (list startpt));初始化点列表
;循环生成多段线的中间顶点
(setq i 1 )
(while (<= i nn)
(if (not (zerop (rem i 2))) ;判断是n否为奇数
;奇数
(progn
(setq p (polar startpt ang (* len i)))
(setq p (polar p (+ ang (/ pi 2)) h))
(setq ptlst (cons p ptlst))
)
;偶数
(progn
(setq p (polar startpt ang (* len i)))
(setq ptlst (cons p ptlst))
)
)
(setq i (1+ i))
)
(setq ptlst (reverse ptlst))
(Make-LWPOLYLINE ptlst)
)
(defun Make-LWPOLYLINE (lst / PT)
(entmakeX
(append
(list
'(0 . "LWPOLYLINE")
'(100 . "AcDbEntity")
'(100 . "AcDbPolyline")
(cons 90 (length lst))
)
(mapcar '(lambda (pt) (cons 10 pt)) lst)
)
)
) 思路应该是错了,在研究研究
(defun c:tt ( / )
(setq mspace (vla-get-modelspace(vla-get-activedocument(vlax-get-acad-object))))
(setq w 0.54852814);一个波峰到波谷宽度
(setq h -0.3);波峰到波谷高度
(setq bulge2 0.414214);中间段凸度
(setq bulge1 (/ bulge2 2.0));起始段和终点段凸度
(setq p1 (getpoint "\n请输入起点: "))
(setq p2 (getpoint p1 "\n请输入终点: "))
(setq len1 (distance p1 p2));计算起点到终点的长度
(setq ang (angle p1 p2));计算起点到终点的角度
(setq n (fix (/ len1 w)));最大波数
(setq len2 (* w n));最大波数需要的长度
(setq len3 (/ (- len1 len2) 2));计算起点偏移长度
(setq startpt (polar p1 ang len3));计算起点偏移点坐标
(setq ptlst (list startpt));初始化点列表
;循环生成多段线的中间顶点
(setq i 1 )
(while (<= i n)
(if (not (zerop (rem i 2))) ;判断是否为奇数
;奇数
(progn
(setq p (polar startpt ang (* w i)))
(setq p (polar p (+ ang (/ pi 2)) h))
(setq ptlst (cons p ptlst))
)
;偶数
(progn
(setq p (polar startpt ang (* w i)))
(setq ptlst (cons p ptlst))
)
)
(setq i (1+ i))
)
(setq ptlst (reverse ptlst))
;计算每段线中点坐标
(setq endpt (last ptlst))
(setq midptlst '())
(while (cadr ptlst)
(setq midpt (mapcar '(lambda (x y) (/ (+ x y) 2.)) (car ptlst) (cadr ptlst)))
(setq midptlst (cons midpt midptlst))
(setq ptlst (cdr ptlst))
)
;加入终点和起点坐标
(setq pl_lst (reverse (cons endpt midptlst)))
(setq pl_lst (cons startpt pl_lst))
;创建多段线
(setq tmp nil)
(foreach pt pl_lst
(setq tmp (append tmp (list (car pt) (cadr pt))))
)
(setq pline (vlax-invoke mspace 'AddLightWeightPolyline tmp))
;设置凸度
(setq nn (- (length pl_lst) 1))
(setq ii 0)
(while (<= ii nn)
(cond
;起始段和终点段凸度
((or (= ii 0) (= ii (- nn 1)))
(vla-SetBulge pline ii (- bulge1))
)
;中间段凸度
(t
(if (not (zerop (rem ii 2)))
(vla-SetBulge pline ii bulge2);奇数段
(vla-SetBulge pline ii (- bulge2));偶数段
)
)
)
(setq ii (1+ ii))
)
) 还是有问题,在研究研究
(defun c:tt ( / )
(setq mspace (vla-get-modelspace(vla-get-activedocument(vlax-get-acad-object))))
(setq w 0.54852814);一个波峰到波谷宽度
(setq h -0.3);波峰到波谷高度
(setq bulge 0.198912);1/8圆凸度
(setq p1 (getpoint "\n请输入起点: "))
(setq p2 (getpoint p1 "\n请输入终点: "))
(setq len1 (distance p1 p2));计算起点到终点的长度
(setq ang (angle p1 p2));计算起点到终点的角度
(setq n (fix (/ len1 w)));最大波数
(setq len2 (* w n));最大波数需要的长度
(setq len3 (/ (- len1 len2) 2));计算起点偏移长度
(setq startpt (polar p1 ang len3));计算起点坐标
(setq ptlst (list startpt));初始化点列表
;循环生成多段线的中间顶点
(setq i 1 )
(while (<= i n)
(if (not (zerop (rem i 2))) ;判断是否为奇数
;奇数
(progn
(setq p (polar startpt ang (* w i)))
(setq p (polar p (+ ang (/ pi 2)) h))
(setq ptlst (cons p ptlst))
)
;偶数
(progn
(setq p (polar startpt ang (* w i)))
(setq ptlst (cons p ptlst))
)
)
(setq i (1+ i))
)
(setq ptlst (reverse ptlst))
;计算每段线中点坐标
(setq endpt (last ptlst))
(setq midptlst '())
(setq tmp_ptlst ptlst)
(while (cadr tmp_ptlst)
(setq midpt (mapcar '(lambda (x y) (/ (+ x y) 2.)) (car tmp_ptlst) (cadr tmp_ptlst)))
(setq midptlst (cons midpt midptlst))
(setq tmp_ptlst (cdr tmp_ptlst))
)
(setq midptlst (reverse midptlst))
;点列表:起点、中点1、点1、中点2、点2、...、终点
(setq pl_lst (list startpt))
(setq j 0)
(repeat (length midptlst)
(setq pl_lst
(append pl_lst
(list
(nth j midptlst)
(nth (1+ j) ptlst)
)
)
)
(setq j (1+ j))
)
(setq pl_lst (append pl_lst (list endpt)))
;创建多段线
(setq tmp nil)
(foreach pt pl_lst
(setq tmp (append tmp (list (car pt) (cadr pt))))
)
(setq pline (vlax-invoke mspace 'AddLightWeightPolyline tmp))
;设置凸度
(setq nn (- (length pl_lst) 1))
(setq ii 0)
(while (< ii nn)
(cond
((or (= (rem ii 4) 0) (= (rem ii 4) 3))
(vla-SetBulge pline ii (- bulge))
)
((or (= (rem ii 4) 1) (= (rem ii 4) 2))
(vla-SetBulge pline ii bulge)
)
)
(setq ii (1+ ii))
)
) 知道错误地方,圆弧与圆弧中间还有条线{:1_12:} 谁能帮我查下BUG是什么原因,有的时候可以,有的时候倒数第二段线有问题{:1_4:}
(defun c:tt3 (/ ang bulge1 bulge2 bxc endpt gh h i j jj k kk len1 len2 len3 mspace n p p1 p2 pline pp pt1 pt2 ptlst1 ptlst2 startpt tmp w)
(setq mspace (vla-get-modelspace(vla-get-activedocument(vlax-get-acad-object))))
(setq w 0.54852814);一个波峰到波谷宽度
(setq h 0.3);波峰到波谷高度
(setq gh 0.08786797);拱高
(setq bxc 0.21213203);半玄长
(setq bulge2 0.414214);中间段凸度
(setq bulge1 (/ bulge2 2.0));起始段和终点段凸度
(setq p1 (getpoint "\n请输入起点: "))
(setq p2 (getpoint p1 "\n请输入终点: "))
(setq len1 (distance p1 p2));计算起点到终点的长度
(setq ang (angle p1 p2));计算起点到终点的角度
(setq n (fix (/ len1 w)));最大波数
(if (>= n 2)
(progn
(setq len2 (* w n));最大波数需要的长度
(setq len3 (/ (- len1 len2) 2));计算起点偏移长度
(setq startpt (polar p1 ang len3));起点坐标
(setq endpt (polar startpt ang len2));终点坐标
(setq ptlst1 (list startpt));初始化点列表
;循环生成多段线的中间顶点
;起点、波谷圆弧中点、波峰圆弧中点、波谷圆弧中点...终点
(setq i 1)
(while (<= i (1- n))
(if (not (zerop (rem i 2)))
;奇数
(progn
(setq p (polar startpt ang (* w i)))
(setq p (polar p (+ ang (/ pi 2)) (- h)))
(setq ptlst1 (cons p ptlst1))
)
;偶数
(progn
(setq p (polar startpt ang (* w i)))
(setq ptlst1 (cons p ptlst1))
)
)
(setq i (1+ i))
)
(setq ptlst1 (cons endpt ptlst1))
(setq ptlst1 (reverse ptlst1))
;循环生成多段线的圆弧顶点
;起点、第一个圆弧终点、波谷圆弧起点、波谷圆弧终点、波峰圆弧起点、波峰圆弧终点...最后一个圆弧起点、终点
(setq ptlst2 (list startpt))
(setq jj (length ptlst1))
(setq j 1)
(while (<= j jj)
(setq p (nth (- j 1) ptlst1))
(cond
;起始段
((= j 1)
(setq pp (polar p (+ ang (/ pi 2)) (- gh)))
(setq pt2 (polar pp ang bxc))
(setq ptlst2 (cons pt2 ptlst2))
)
;中间段
((and (> j 1) (< j jj))
(if (zerop (rem j 2))
(setq pp (polar p (+ ang (/ pi 2)) gh));偶数点
(setq pp (polar p (+ ang (/ pi 2)) (- gh)));奇数点
)
(setq pt1 (polar pp ang (- bxc)));圆弧起点
(setq pt2 (polar pp ang bxc));圆弧终点
(setq ptlst2 (cons pt1 ptlst2))
(setq ptlst2 (cons pt2 ptlst2))
)
;终点段
((= j jj)
(setq pp (polar p (+ ang (/ pi 2)) (- gh)))
(setq pt1 (polar pp ang (- bxc)))
(setq ptlst2 (cons pt1 ptlst2))
(setq ptlst2 (cons p ptlst2))
)
(t nil)
)
(setq j (1+ j))
)
(setq ptlst2 (reverse ptlst2))
;创建多段线
(setq tmp nil)
(foreach pt ptlst2
(setq tmp (append tmp (list (car pt) (cadr pt))))
)
(setq pline (vlax-invoke mspace 'AddLightWeightPolyline tmp))
;设置凸度
(setq kk (- (length ptlst2) 1)) ;多段线段数
(setq k 0)
(while (< k kk)
(cond
;起始段
( (= k 0)
(vla-SetBulge pline k (- bulge1))
)
;中间段
((and (> k 0) (< k (1- kk)))
;设置偶数段
(if (zerop (rem k 2))
;偶数段交替设置
(if (zerop (rem (/ k 2) 2))
(vla-SetBulge pline k (- bulge2));k=2,6,10...
(vla-SetBulge pline k bulge2);k=4,8,12...
)
)
)
;终点段
((= k (1- kk))
(vla-SetBulge pline k (- bulge1))
)
(t nil)
)
(setq k (1+ k))
)
)
(princ "\n两点距离不能形成一个完整的波,程序退出")
)
(princ)
) King、 发表于 2025-11-26 18:29
谁能帮我查下BUG是什么原因,有的时候可以,有的时候倒数第二段线有问题
(defun c:tt3 (/ ang bulge1 bulge ...
(and (>= n 2) (= (rem n 2) 0)) King、 发表于 2025-11-26 19:46
(and (>= n 2) (= (rem n 2) 0))
ifn奇数n-1更好,对,哈哈
页:
[1]