找回密码
 立即注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 660|回复: 4

[求助] 这是经由tango手机扫描以后的点云,初步的修补连成的网格,怎么把它修复成可打印的车

[复制链接]

已领礼包: 50个

财富等级: 招财进宝

发表于 2019-12-19 15:10:42 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?立即注册

×
本帖最后由 君是我的泪 于 2019-12-20 08:16 编辑

未命名.JPG 无标题.jpg 未命名2.JPG
请点击此处下载

查看状态:需购买或无权限

您的用户组是:游客

文件名称:car.zip 
下载次数:1  文件大小:2.17 MB 
下载权限: 不限 以上  [免费赚D豆]


上传的是CAD文件和stl经处理过的,貌似很复杂,点云封面实体化,个人不是很懂。求大神指点。以前对于这一类修复,截取几十个平面,利用沙盒重新生成即可,但是现在都是碎片,可能只是点集,这一类的处理需要怎样配置的电脑。有没有这一类逆向建模的插件。唯一的办法就是逐一分离,获得截平面最外轮廓,提取沙盒计算封面
论坛插件加载方法
发帖求助前要善用【论坛搜索】功能,那里可能会有你要找的答案;
如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子标题加上【已解决】;
如何回报帮助你解决问题的坛友,一个好办法就是给对方加【D豆】,加分不会扣除自己的积分,做一个热心并受欢迎的人!

已领礼包: 5295个

财富等级: 富甲天下

发表于 2019-12-19 18:38:41 | 显示全部楼层
是想生成立体图吗?

点评

封闭的立体图。是的,做到可以初步打印,困难吗?要不要把数据点csv 文件 上传一下。  详情 回复 发表于 2019-12-20 08:09
论坛插件加载方法
发帖求助前要善用【论坛搜索】功能,那里可能会有你要找的答案;
如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子标题加上【已解决】;
如何回报帮助你解决问题的坛友,一个好办法就是给对方加【D豆】,加分不会扣除自己的积分,做一个热心并受欢迎的人!
回复 支持 反对

使用道具 举报

已领礼包: 50个

财富等级: 招财进宝

 楼主| 发表于 2019-12-20 08:09:38 | 显示全部楼层
本帖最后由 君是我的泪 于 2019-12-30 12:36 编辑
tzfcn 发表于 2019-12-19 18:38
是想生成立体图吗?

封闭的立体图。是的,做到可以初步打印,困难吗?要不要把数据点csv 文件 上传一下。su里导入3dmax导出的stl,之前经由3dreshaper处理过后
请点击此处下载

查看状态:需购买或无权限

您的用户组是:游客

文件名称:gq1o 
下载次数:1  文件大小:50 MB 
下载权限: 不限 以上  [免费赚D豆]

论坛插件加载方法
发帖求助前要善用【论坛搜索】功能,那里可能会有你要找的答案;
如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子标题加上【已解决】;
如何回报帮助你解决问题的坛友,一个好办法就是给对方加【D豆】,加分不会扣除自己的积分,做一个热心并受欢迎的人!
回复 支持 反对

使用道具 举报

已领礼包: 5295个

财富等级: 富甲天下

发表于 2019-12-20 09:08:43 | 显示全部楼层
刘岩

摘 要: 传统的三维建模是基于图片信息的场景建模和表现,这种技术存在着缺少真实感,三维几何信息不准确以及处理速度缓慢的缺点。因此,近年来基于激光扫描技术的三维建模技术成为了研究热点。激光扫描仪能够直接获取景物的深度信息,方便快捷。本文提出的方法能够很好的为快速三维建模进行服务,尤其是比较关注街道两侧信息的三维获取,这将大大减少人工三维数据获取及其建模的工作量,将有很好的应用前景。

关键词: 激光;点云数据;三维建模;模型重建

整个点云数据建模过程包括数据预处理和模型重建。数据预处理为模型重建提供可靠精确的点云数据,降低模型重建的复杂度,提高模型重构的精确度和速度。数据预处理阶段涉及的内容有点云数据的滤波、点云数据的平滑、点云数据的缩减、点云数据的分割、点云数据的分类、不同站点扫描数据的配准及融合等;模型重建阶段涉及的内容有三维模型的重建、模型重建后的平滑、残缺数据的处理和模型简化等。实际应用中,应根据三维激光扫描数据的特点及建模需求,选用相应的数据处理策略和方法。

1 数据预处理

针对车载激光点云数据的特性,将数据预处理方法分为两类,半自动的数据预处理方法和全自动的数据预处理方法。

1.1 半自动数据预处理方法

半自动的方法主要是利用现有的各种类型的点云数据处理软件,如三维激光扫描仪配带的相应点云数据处理软件或逆向工程领域比较著名的商业点云处理软件,一般都具有点云数据编辑、拼接与合并、数据点三维空间量测、点云数据可视化、空间数据三维建模、纹理分析处理和数据转换等功能,但它们往往具有通用的处理功能,对于特定的数据处理效果有一定的不足之处,在功能和性能上也或多或少存在一定缺陷,且一般比较昂贵。

1.2 全自动数据预处理方法

全自动的数据预处理方法主要是通过一定的算法来实现点云数据预处理,包括点云数据滤波,点云数据分类等。

数据滤波的目的是为了去除测量噪声。实际测量过程中存在各种因素的影响,观测数据往往不是理想的结果。为了得到合理正确的目标物体形体信息,需要对观测数据进行滤波,剔除掉含有粗差的相关观测数据和无效形体数据,从而得到目标物体形体信息的最佳估值。

1.3 数据预处理结果

按照以上算法流程编写 MATLAB 程序,实现地面点与非地面点的分离,用本算法进行滤波时要注意滤波参数的设置,通常要根据不同地表形态来选取适当的参数。应用本算法对铁路两旁的数据进行了滤波处理,前后对比效果如图1、2所示,从中可以看出该算法能很好的实现地面点与非地面点的分离,但是该算法需要输入很多滤波参数,如地形坡度,窗口大小等,这些直接影响着滤波的效果,因此要实现很好的滤波需要根据实际地形情况反复试验几个滤波参数。

2 模型重建

点云数据经过滤波分类处理之后,就可以针对分出来的不同类别采用不同的建模方法了,这里滤波分类主要分为地面点和非地面点,所以,模型重建也通过这两类来分析。

2.1 地面点建模

与通常的栅格影像数据不同,激光点云数据是离散分布的不规则点数据。因此,要用模型的形式表示地形表面分布,就需要进行网格化处理,即将离散的点连续化。我们采用三角网的方式对数据进行组织,地形表面由连接数据点的三角形构成,通过进行插值实现对地形表面的逼近和近似,这是对地形表面的一种精确表达。

2.2 非地面点建模

非地面点比较复杂,包括建筑物、植被、道路两旁设施等。随着 AutoCAD、Maya 、逆向工程等三维建模软件的出现,可以通过人机交互的手段来辅助三维建模,如图4所示为利用逆向工程软件 ImageWave 对城市道路两旁的建筑物点云数据进行建模效果图,图5展示了利用软件对模型进行纹理映射与可视化。但这些方法费时费力,而且对使用者的技巧要求很高,对于结构复杂、不规则的场景建模更是无能為力。

显然纯粹地利用三维建模软件实现激光点云非地面点数据的模型重建,并非一个好的办法,研究怎样从这些离散的三维点云中快速准确地构建出真实的模型显得尤为重要,逆向工程中用激光扫描某个特定物体获得的数据直接重构物体,但此方法在车载激光扫描测量中不可行,因为是它是自动目标采集,扫描无特定目的,不能控制扫描哪些物体。所以激光扫描的数据量非常大,如果直接进行三维重构的话消耗太大,必须先对距离图像进行处理,提取出特征点、特征线和特征面再继续建模。由于到目前为止,还没有距离图像分割和特征提取的成熟、可行方法,使得当前的激光扫描系统都采用与 CCD 或类似图像采集设备集成,其中距离图像以用于构建高精度的 DEM 为主,图像分割和特征提取则采用 CCD影像数据解决。这种联合作业方式使得系统运行成本高、控制比较复杂、数据存储量大、多源数据处理与融合复杂。目前对距离图像的数据处理方法集中在构建DSM/DEM 上,或者附加 CCD 影像进行融合,对直接从距离图像中进行目标分类和特征提取的研究比较缺乏。鉴于此本文通过阅读文献,针对车载激光点云数据总结了以下的建模方法和步骤。

(1)对非地面点进一步分类

通过车载扫描系统获得的点云数据中非地面点存在很多杂点,受车体行驶周围影响很大,如要对道路两旁建筑物建模,则建筑物点云受路两旁的树木,广告牌、线杆以及周围车辆等影响很大。这样直接用这些点云数据进行建筑物建模,效果会很差,所以有必要对非地面点进一步分类,可分为建筑物,线杆以及其它地物点(如植被、路灯、公交站牌、广告牌等)等。其中建筑物是非地面点中最重要的部分,也是通常最关心的地物。

(2)通过点云数据对建筑物进行特征提取

利用前面提出的数据分类方法,考虑建筑物自身的几何特征,设计了一个简单的建筑物特征提取方法:首先,从分类后的激光扫描数据中提取出建筑物数据;然后,从建筑物数据中提取出每个格网单元中 Z 值最大和 Z 值最小的数据点,这些点就是建筑物的特征点;后续处理中,可以从这些特征点中探测线特征或者用线段拟合这些特征点得到建筑物的特征线,也可以导入专业建模软件直接参与三维建模。

(3)线杆提取

线杆提取基于以下的假设:1)、杆是独立的直线;2)、杆近乎垂直;3)、杆有最小高度;4)、杆应在建筑物或墙面的前面。当然以上假设也限制了一些杆的提取,比如杆正好在建筑物或墙面附近,这样干扰点比较多,本算法暂不考虑这些。设置一个距离门限值来识别独立的直线,线的独立性通过计算线间的垂直中心距离来得到;设置一个倾斜角门限值来识别直线在倾斜角范围内是否垂直;有时,杆的底部被植物或小的物体掩藏起来,此时只能得到杆的上部。因此设置另一个门限值来检查杆的底部的位置;当杆目标很小时,激光数据也可能不包含反射自杆的点,这些小物体的获取依赖于车速。车速决定激光数据的沿轨迹分辨率,当车速过快时极少杆被扫描到,所以有些时候还要人工对比一下图像数据再做决定。

3 结束语

本文结合三维建模案例,探讨了基于激光点云数据的数据预处理方法和模型重建方法,给出了全自动数据预处理的算法流程,在模型重建中,探讨了地面点重建和非地面点重建。该方法能够很好的为快速三维建模进行服务,尤其是比较关注街道两侧信息的三维获取,这将大大减少人工三维数据获取及其建模的工作量,将有很好的应用前景。
论坛插件加载方法
发帖求助前要善用【论坛搜索】功能,那里可能会有你要找的答案;
如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子标题加上【已解决】;
如何回报帮助你解决问题的坛友,一个好办法就是给对方加【D豆】,加分不会扣除自己的积分,做一个热心并受欢迎的人!
回复 支持 反对

使用道具 举报

已领礼包: 4365个

财富等级: 富可敌国

发表于 2019-12-21 00:02:21 | 显示全部楼层
论坛插件加载方法
发帖求助前要善用【论坛搜索】功能,那里可能会有你要找的答案;
如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子标题加上【已解决】;
如何回报帮助你解决问题的坛友,一个好办法就是给对方加【D豆】,加分不会扣除自己的积分,做一个热心并受欢迎的人!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|申请友链|Archiver|手机版|小黑屋|辽公网安备|晓东CAD家园 ( 辽ICP备15016793号 )

GMT+8, 2024-12-26 03:04 , Processed in 0.467961 second(s), 46 queries , Gzip On.

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表