找回密码
 立即注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 5183|回复: 8

[转贴]:民用建筑工程设计常见问题分析及图示

[复制链接]
发表于 2006-7-26 12:10:16 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?立即注册

×
民用建筑工程设计常见问题分析及图示
(混凝土结构)05SG109-3
批准部门:中华人民共和国建设部  批准文号:建质[2005]14号  统一编号:GJBT—790
实行日期:二00五年三月一日
主编单位:中元国际工程设计研究院
中国建筑标准设计研究院
中国建筑科学研究院建筑结构研究所

目  录
编制说明
混凝土结构
1 材料选用
1.1 耐久性要求
1.2 混凝土强度等级
1.3 钢筋选用及代换
2 结构布置
2.l 结构体系及构件布置
2.2 楼(屋)盖结构
2.3 变形缝及后浇带设置
3 结构计算与分析
3.1 计算书内容
3.2 计算程序及计算模型
3.3 计算内容及参数设置
3.4 计算结果分析与应用
4 楼板
4.1 楼板荷载及计算
4.2 楼板配筋及构造
4.3 特殊部位楼板加强措施
5 梁
5.1 梁的计算
5.2 梁的配筋构造
5.3 框支梁
5.4 宽扁梁
6 柱
6.l 柱的计算
6.2 柱的配筋构造
7 框架梁柱节点
8 剪力墙
8.l 剪力墙的计算
8.2 剪力墙底部加强部位
8.3 剪力墙厚度及截面高度
8.4 翼墙、端柱、暗梁及连梁
8.5 剪力墙边缘构件
8.6 剪力墙配筋构造
9 其他
编制说明
1,主要编制依据:
建设部建质[2004]46号文”关于印发《二00四年国家建筑标准设计编制工作计划》的通知”
《建筑结构可靠度设计统一标准》GB 50068-2001(简称可靠度标准)
《建筑抗震设防分类标准》GB 50223-2004(简称设防分类标准)
《人民防空地下室设计规范》GB50038-94(2003年版)(简称人防规范)
《地下工程防水技术规范》GB50108-2001(简称防水规范)
《建筑结构荷载规范》GB 50009—2001(简称荷载规范)
《建筑抗震设计规范》GB 50011-2001(简称抗震规范)
《混凝土结构设计规范》GB 50010-2002(简称混凝土规范)
《高层建筑混凝土结构技术规程》JGJ 3-2002(简称高规)
《建筑工程设计文件编制深度规定》建质[2003]84号(简称设计文件深度)
《施工图设计文件审查要点》[2003]2号(简称审查要点)
2,编制目的
根据现行的国家有关规范,规程,对民用建筑工程设计中由于设计人员的考虑不周和对规范、规程的理解不够全面,造成的一些不当做法和错误,以及在施工图设计文件审查中常出现的问题,进行汇总、整理、分析,并提出改进措施及依据,从而加强设计人员对规范及规程全面、准确的理解,避免类似错误的发生,合理和优化设计,提高设计质量。
3,主要内容
本图集共分四册。第一册为工程设计管理,荷载与地震作用,地基与基础,第二册为砌体结构,第三册为混凝土结构,第四册为钢结构和空间网格结构,采用图文并茂及对照编排方式给出设计中工程技术人员容易混淆、容易忽视的问题及相关规定和改进措施示例。
本分册主要内容包括:混凝土结构的材料选用、结构布置,结构计算与分析、楼板、梁、柱,框架梁柱节点、剪力墙及其他等。
4.适用范围
本图集适用于民用建筑或一般工业建筑工程设计,可供设计、审图、监理、施工和管理等部门的技术人员使用。
5,使用说明
5.1 本图集所列常见问题是指不符合现行国家规范、规程或不够合理、不够完善的做法,改进措施是指根据规范、规程的规定采取的做法。
5.2 鉴于工程的具体情况,解决问题的措施不是唯一的,设计时应根据工程实际情况,注意避免本图集提出的“常见问题”,采取合理的解决措施,不宜拘泥于本图集提供的改进方案。
5.3 使用本图集应严格执行国家现行标准,规范和规程的规定,如涉及地方标准,还应协调考虑。

正文
1 材料选用
1.1 耐久性要求
1.1.1 结构设计时,对混凝土结构的耐久性要求不符合《混凝土规范》的规定。
原因分析:耐久性能是混凝土结构应当满足的基本性能之一,是结构在设计使用年限内正常而安全地工作的重要保证。
结构设计时,仅保证混凝土的强度等级是不够的,仅防止混凝土的碱集料反应也是不够的。因为混凝土结构的耐久性能涉及钢筋和混凝土两大类问题。就混凝土而言,其耐久性不仅与碱集料反应有关,还与碳化、冻融、化学物质侵蚀、温度变化影响、机械作用、生物作用等因素有关;而钢筋的锈蚀,除受混凝土裂缝的影响外,与混凝土中氯离子含量有直接的关系。这也是《混凝土规范》GB50010第3.4.2条限制氯离子含量的原因。对处于室内正常环境的构件,在上述诸因素中,混凝上的碳化及钢筋的锈蚀可能是影响混凝土结构耐久性的最主要因素。
此外,由于构件受力产生的裂缝易造成钢筋锈蚀,也是影响结构耐久性的主要因素。如室外雨篷在根部弯矩最大处混凝土常常开裂,如图l.l.1所示。积水和有害物质侵蚀及冻融、暴晒等反复作用,受力钢筋会严重锈蚀而削弱,甚至导致受力钢筋拉断、雨篷折断塌落。

改进措施:《混凝土规范》规定,混凝土结构的耐久性设计应根据环境类别和设计使用年限进行。
(1)混凝土结构设计使用年限为50年时,其耐久性要求应符合《混凝土规范》第3.4.2条的规定,即应保证混凝土的最低强度等级和最少水泥用量,限制混凝土的氯离子含量、碱含量和最大水灰比,同时还应保证不同类型的构件在不同混凝土强度等级和不同环境类别条件下的混凝土保护层厚度(详见《混凝土规范》第9.2.1条),
(2)当混凝土结构设计使用年限为100年时,其耐久性要求在《混凝土规范》第3.4节中有更严格的规定。
(3)构件设计应满足《混凝土规范》第3.3节中关于裂缝控制等级及最大裂缝宽度限值的要求。

1.1.2 建筑物内有游泳池和大型浴室时,游泳池和浴室的环境类别划分不当。
原因分析:一般情况下,设计人员通常将±0.000以下的基础和构筑物以及室外露天构件等的环境类别,根据当地是否属于严寒和寒冷地区而划分为二b或二a类,±0.000以上结构的环境类别一般划分为一类,但忽略了建筑内有游泳池和大型浴室的情况,游泳池(含周围构件)和浴室虽在±0.00以上,但处于潮湿的环境下,不属于室内正常环境,不应将其环境类别划分为一类。
改进措施:应根据《混凝土规范》GB50010第3.4.1条的规定,将游泳池(含周围构件)和大型浴室等处于潮湿环境下的结构构件的环境类别划分为二a类,并使其耐久性和保护层厚度应符合《混凝土规范》第3.4.2条和第9.2.1条关于二a类环境的要求。

1.2 混凝土强度等级
1.2.1 结构设计时,与无侵蚀性的水或土壤直接接触的构件、露天环境下的构件,所采用的混凝土强度等级低于《混凝土规范》GB50010第3.4.2条的规定。
原因分析:结构设计时,设计人员应根据构件的重要性、受力特征(受弯、受压、抗震与非抗震、预应力与非预应力等)、设计使用年限、构件所处环境类别等因素,合理选用混凝土的强度等级。
在通常情况下,混凝土的强度等级越高,其密实性越好,抗渗能力也越强,因而构件的承载能力和耐久性能也越好。就保证构件有必要的耐久性而言,《混凝土规范》GB50010第3.4.2条对设计使用年限为50年的结构混凝土根据不同环境类别的构件提出了最低混凝土强度等级的要求,设计时应遵照执行。
改进措施:
(1)钢筋混凝土基础,包括墙下条形基础、柱下独立基础、柱下条形基础、高层建筑筏形基础、桩基础等,一般情况下,均属于与无侵蚀性水或土壤直接接触的构件,在非严寒和非寒冷地区,其环境类别属二a类。除了满足承载力要求,有地下室时还应满足抗渗要求。根据《混凝土规范》第3.4.2条的规定,当设计使用年限为50年时(以下同),其混凝土强度等级不应低于C25,当有可靠工程经验时,也可采用C20。《建筑地基基础设计规范》GB50007规定,钢筋混凝土基础的混凝土强度等级不应低于C20,这与《混凝土规范》的规定,在原则是一致的。
在严寒和寒冷地区,钢筋混凝土基础与无侵蚀性的水或土壤直接接触,由于会发生冻融循环,其环境类别属二b类,《混凝土规范》规定其混凝土强度等级不应低于C30,当有可靠工程经验时,也可采用C25。
(2)室外露天环境下的构件,如雨篷、遮阳板等,受大气及雨雪的交替作用,在非严寒和非寒冷地区,其环境类别属二a类;在严寒和寒冷地区,其环境类别属二b类,应根据《混凝土规范》第3.4.2条的规定,选用其混凝土强度等级。
(3)消防水池等类构筑物,迎水面直接与无侵蚀性水接触,也应根据是否会发生冻融,判定其环境类别是二b类还是二a类,并按《混凝土规范》的规定,确定其最低混凝土强度等级。

1.2.2 结构设计时,未合理选用现浇楼 (屋)面板的混凝土强度等级和钢筋强度等级。
原因分析:楼(屋)面板是长、宽两个方向尺寸很大、厚度方向尺寸相对较小、主要承受垂直于板面的荷载(永久荷载和活荷载),以受弯为主的板类构件。
为了保证板类构件安全可靠地工作,《混凝土规范》GB50010既规定了板的最低混凝土强度等级为C20,也规定了其纵向受力钢筋的最小配筋率为ρmin = 0.45ft/fy且不小于0.20%。
由于现浇楼(屋)面板通常与墙、梁相连并整浇,当混凝土收缩和温度变化时,其约束拉应力可能超过混凝土的抗拉强度而发生裂缝,因而其混凝土强度等级也不宜过高。混凝土强度等级的提高,对常用厚度的板类构件受弯承载力的提高贡献很小,故对这类构件的混凝土强度等级不宜选得过高。
从规范对板类构件的最小配筋率规定可知,配筋率随混凝土强度等级的提高而增大,随钢筋强度等级的提高而降低,详见表1.2.2-1。
改进措施:适宜的混凝土强度等级为C20~C30,不宜超过C35。过高的混凝土强度等级,会增加楼板因温度变化和收缩引起裂缝的可能性,此外,当板类构件的配筋为最小配筋率时,会使配筋量增加,不合理也不经济,特别是采用HPB235级钢筋时更为明显。
关于钢筋的选用,衡量其经济性的不是钢筋的实际价格,而是它的强度价格比,即每元钱可购得的单位钢筋的强度。常用钢筋的强度价格比见表1.2.2-2。由此表可见在设计中宜采用HRB400级钢筋。
强度价格比高的钢筋经济性较好,不仅可以减少配筋率,从而减少配筋量,方便施工,而且还减少了钢筋在加工、运输和施工等方面的各项附加费用。所以,就钢筋的强度价格比(经济性)而言,板类构件的受力钢筋,不宜采用HPB235级钢筋,宜采用HRBB335级钢筋或HRB400级钢筋。这两类钢筋除强度高外,延性及锚固性能也很好,不必象HPB235级钢筋那样锚固时末端还要加弯钩。当然,采用这两种钢筋做板的受力钢筋时,对大跨度板应保证正常使用状态下最大裂缝宽度及挠度符合要求。
表1.2.2-1  板类受弯构件受拉钢筋最小配筋率(%)
混凝土        强度等级        C20        C25        C30        C35
        ft (N/mm2)        1.10        1.27        1.43        1.57
钢筋        HPB235级        210        0.24        0.27        0.31        0.34
        HRB335级        300        0.20        0.20        0.21        0.24
        HRB400级        360        0.20        0.20        0.20        0.20
表1.2.2-2  各种钢筋的强度价格比
钢筋种类        强度标准值        强度设计值        钢筋价格        设计强度价格比(Mpa Kg/元)
热轧钢筋        HPB235级        235        210        3020元/t(6.5、8、10盘条)        70
        HRB335级        335        300        2980元/t(12、14)        101
        HRB400级        400        360        3100元/t(12、14)        116
注:钢筋价格系根据2005年11月24日北京市的市场价格。

1.3 钢筋选用和代换
1.3.1 设计抗震等级为一、二级的钢筋混凝土框架时,未对普通纵向受力钢筋的力学性能提出要求。
原因分析:《抗震规范》GB 50011规定了普通纵向受力钢筋的抗拉强度实测值与屈服强度实测值的比值最小值,是为了保证当构件某个部位出现塑性铰后,塑性铰处有足够的转动能力和耗能能力;规定钢筋的屈服强度实测值与强度标准值的比值最大值,则是为了有利于实现强柱弱梁、强剪弱弯这一抗震设计原则。
改进措施:结构设计时,在结构设计文件中(一般是在结构设计总说明中),应根据《抗震规范》第3.9.2条的规定,明确要求抗震等级为一、二级的框架,其普通纵向受力钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 l.25;屈服强度实测值与强度标准值的比值不应大于1.30。

1.3.2 抗震设计时,未对主体结构中纵向受力钢筋的替代原则做出规定。
原因分析:如果不规定主体结构纵向受力钢筋的替代原则,常会使替代后的纵向受力钢筋的总承载力设计值大于原设计的纵向受力钢筋的总承载力设计值,从而可能造成构件抗震薄弱部位转移,也可能造成构件在受其影响的部位发生混凝土脆性破坏(混凝土压碎、构件剪切破坏等)。
改进措施:在结构设计文件中,应根据《抗震规范》GB50011第3.9.4条的规定,明确要求主体结构纵向受力钢筋替代时,应按照钢筋受拉承载力设计值相等的原则换算,并应满足正常使用极限状态(如挠度、裂缝宽度验算等)和抗震构造措施(如最大及最小配筋率、保护层厚度、钢筋间距等)的要求,特别是以强度等级较高的钢筋替代原设计中的纵向受力钢筋时,还应注意上述替代引起钢筋延性(强屈比、塑性设计条件等)变化的影响。

2 结构布置
2.1 结构体系及构件布置
2.1.1 框架梁、柱中心线宜重合,而当梁、柱中心线偏心距大于柱截面该方向宽度的1/4时,未采取任何措施。
原因分析:框架梁、柱中心线不重合,会使框架柱和梁柱节点受力性能恶化。当框架梁、柱中心线偏心距大于柱截面该方向宽度的l/4时,在水平地震力作用下的节点核心区不仅出现斜裂缝,而且梁下方柱内还有竖向劈裂裂缝产生。
改进措施:最常采用的措施是框架梁水平加腋,如图2.l.1所示。加腋厚度可取梁截面高度,平面尺寸则宜符合《高规》JGJ3第6.l.3条的规定:
bx / lx≤1/2
bx / bb≤2/3
bx + bb + x ≥bc/2
框架梁加腋后,可以明显改善框架梁、柱节点承受反复荷载的能力。

2.1.2 框架结构抗震设计时,采用框架和部分砌体墙混合承重的形式。
原因分析:框架结构和砌体结构是两种截然不同的结构体系,结构材料性质完全不同(前者可以认为是延性材料,后者为脆性材料),其抗侧力刚度、变形能力等相差亦很大,在地震作用下不能协同工作。震害表明,如果将它们在同一建筑中混合使用,地震发生时,抗侧力刚度远大于框架的砌体墙会首先遭到破坏,导致框架的内力急剧增加,然后导致框架破坏甚至倒塌。
改进措施:按《高规》JGJ3第6.l.6条的规定:在地震区,不应采用框架和砌体墙混合承重的形式。例如,不仅框架结构房屋不得采用部分砌体墙承重,框架结构中的楼电梯间、局部突出屋顶的电梯机房、楼梯间、水箱间等,也不得采用砌体墙承重,而应采用框架承重,另设非承重填充墙。
2.2 楼(屋)盖结构
2.2.1 高层建筑抗震设计时,楼板应避免开大洞口或有较大凹入;当楼板开有大洞口或有较大凹入而使结构成为平面不规则的结构时,未对被削弱的楼板或容易产生应力集中部位采取加强措施。
原因分析:为了保证楼板在平面内有足够大的刚度,也为了防止或减轻建筑物各部分之间振动不同步,限制结构的扭转效应,在结构平面布置时,应尽量使平面简单、规则、对称,避免楼板有较大的外伸或凹入,避免在楼板上开大洞。当楼板有较大的凹入或开有大面积洞口时,除了会使楼板平面内的刚度减弱外,还会使凹入或洞口处与相邻部位间的连接变弱,此外凹入处也容易产生应力集中,地震时常会在这些部位产生较严重的震害。
由于建筑功能的要求,当楼板有较大的凹入或开有较大洞口而使结构成为平面不规则结构时,除了在结构整体计算时,采用考虑楼板平面内变形影响的计算方法外,尚应采取相应的加强措施。
改进措施:楼板有较大的凹入时的加强措施主要有:
(1)设置拉梁,如图2.2.l-1所示;也可设置拉板,板厚取200—300mm,按暗梁的配筋方式配筋。拉梁、拉板内纵向钢筋的配筋率不宜小于1.0%,纵向受拉钢筋不得搭接,在支座内的锚固长度为laE。
(2)设置阳台板或不上人的外挑板,如图2.2.1-1所示,板厚不宜小于180mm,双层双向配筋,每层、每向配筋率不宜少于0.25%,并按受拉钢筋锚固在支座内。
(3)凹角部位增配斜向钢筋,如图2.2.l-2所示。
楼板开有大洞口时的加强措施主要有:(1)加厚洞口附近的楼板,双层双向配筋,每层、每向配筋率不宜少于 0.25%;在洞口角部集中配置斜向钢筋,如图2.2.1-2所示;(2)在洞口边缘设置边梁或暗梁,暗梁宽度可取板厚的2倍,纵向钢筋配筋率不宜小于1.0%。

2.3 变形缝及后浇带设置
2.3.1 建筑物的结构单元长度过长或宽度较宽(超过规范规定的伸缩缝最大间距较多)时,除设置后浇带外,未采取其他可靠措施。
原因分析:温度变化和混凝土收缩会使混凝土结构产生裂缝。为了把这种裂缝控制在规范允许的范围内,使裂缝不致影响结构的正常使用和耐久性,《混凝土规范》GB50010在借鉴国外规范的基础上,根据我国的具体情况和工程经验,对各类结构伸缩缝的最大间距作出了限制。
在建筑产品商品化的大趋势下,通过设置伸缩缝把过长过宽的建筑物分成较小的独立结构单元,显然是必要的。但在工程设计中,常常由于建筑功能的需要、抗震的要求,以及其他原因,不得不把建筑物的结构单元长度或宽度加大,超过了规范的最大伸缩缝间距。《混凝土规范》第9.1.3条指出,当有“充分依据和可靠措施”时,可适当增大建筑物伸缩缝的间距。
要注意的是,这里所指的“充分依据和可靠措施”不应仅理解为已建成的工程这么做了,而应进行必要的全面分析,决定应采取的措施。因为已建成的工程即使不出现裂缝问题,也并不说明照此办法做的其他工程也不会出现问题。
改进措施:设置后浇带无疑是减小混凝土收缩效应的重要措施之一,但决不应将后浇带等同于伸缩缝或用后浇带代替伸缩缝,因为两者的作用完全不同。
关于增大建筑物伸缩缝间距的措施,除了设置后浇带外,其他主要措施是:采用收缩小的水泥、减少水泥用量和水灰比、保湿养护,采用膨胀剂补偿混凝土收缩、局部加强配筋、施加预应力、加强保温隔热措施、设置滑移层解除约束、在建筑物顶部留局部伸缩缝(如音叉式伸缩缝),如图2.3.1所示。
结构工程师应根据工程的具体情况,灵活而有针对性的采用上述措施。
  
3 结构计算与分析
3.1 计算书内容
3.1.1 结构设计计算书内容不全,是工程设计中不同程度存在的较为普遍的问题。
原因分析:结构设计计算书内容不全是工程设计中不同程度存在的较为普遍的问题,应引起结构工程师们的注意。
由于结构计算在结构设计中的重要性,所以就有必要对结构设计计算书的内容提出最基本的要求。
改进措施:一般情况下,较完整的钢筋混凝土结构设计计算书主要应包括以下内容:
(1)用电算程序计算时,应注明所采用的计算程序名称、代号、版本及编制单位,计算程序必须经过有效审定(或鉴定),电算结果应经分析认可。
(2)混凝土结构电算计算书应包括:总体信息输入,结构简图,荷载简图,配筋简图,墙,柱底部截面内力简图及D+L计算结果简图,楼层侧向刚度比,重力二阶效应验算,结构整体稳定验算,楼层受剪承载力比,周期及周期比,地震作用振型,楼层地震剪力系数,框架-剪力墙结构及框架-筒体结构框架部分承受的地震倾覆力矩比,地震有效质量系数,总地震剪力,楼层位移及位移比,墙、柱轴压比,框架柱的计算长度系数及超筋超限信息等;
(3)建筑装修荷载等电算程序无法完成的荷载计算书;大跨度梁、板构件挠度及裂缝最大宽度计算书,电算程序无法完成的某些受力构件的计算书;补充构件计算书时,应提供构件平面布置简图和计算简图,并注明计算图表或不常用公式的来源;
(4)地基承载力计算、地基变形计算(规范有要求时)、基础计算(包括抗弯、抗剪抗冲切计算、人防结构计算、规范要求的抗震验算及必要时的抗浮验算);
(5)复杂结构(包括带转换层的结构、带加强层的结构、错层结构、多塔结构、连体结构及中大型影剧院、体育场馆等)应提供不少于2个不同力学模型程序的计算书;
(6)特别不规则的建筑、甲类建筑、《抗震规范》GB50011表5.1.2-1中所列高度范围的高层建筑,应补充时程分析的计算书;《抗震规范》第5.5.2条所列的结构应进行罕遇地震作用下的弹塑性变形验算;
(7)高层建筑中的转换层、加强层、连体结构的连接体等,宜补充结构局部的有限元分析计算书;
(8)所有的结构计算书均应校审,并由设计、校对、审核人在计算书封面上签字;所有计算书均应装订成册。

3.2 计算程序及计算模型
3.2.1 结构计算简图与施工图不完全相符,未做必要的调整和补充计算复核。
原因分析:结构计算简图与施工图相符,这是结构设计最重要的原则之一,也是对结构工程师最基本的要求,详见《抗震规范》GB50011第3.6.6条规定。
结构计算简图与施工图不完全相符,主要发生在地下室和标准层以下各层,屋顶层和其他楼层有时也会发生。这种不完全相符主要表现在:(1)有的剪力墙平面位置及洞口尺寸不符;(2)有的剪力墙洞口数量不符;(3)构件断面尺寸或混凝土强度等级不符;(4)个别部位梁、柱布置不一致。
改进措施:为了避免或减少结构计算简图与施工图不完全相符的情况发生,从方案设计阶段开始,初步设计阶段、施工图设计阶段,结构工程师均应同建筑师、设备工程师密切配合,使结构设计既满足建筑功能的需要,又符合结构设计的最基本的要求,例如结构的规则性要求,抗震设计要求等。
在施工图设计开始时,结构工程师进行结构整体计算前,应将结构计算简图与建筑平、立面图、设备布置图逐一核对和确认,使结构计算简图同实际施工图一致。这样才能使计算结果具有真实性,从而保证结构设计的正确性。
当然,在施工图设计过程中,因建筑或设备专业的要求,结构布置做些微调也是可能的,但一定要通过补充计算复核加以妥善处理。

3.2.2 高层建筑结构整体计算时,未合理假定楼板的刚度。
原因分析:结构整体计算时,楼板刚度的合理假定是一个很重要的问题,它不仅影响结构的计算效率,更重要的是它直接决定了计算结果的精度、可靠性和与楼板实际受力的符合程度。
改进措施:在工程设计时,应根据《抗震规范》GB50011和《高规》JGJ3的规定,对楼板形状比较规则的普通工程,采用楼板在平面内无限刚、平面外刚度为零的刚性楼板假定;对楼板形状复杂的工程,如有效宽度较窄的环形楼板、有大开洞的楼板、有狭长外伸段的楼板、局部变窄形成薄弱连接部位的楼板、连体结构的狭长连接体楼板等,则应采用符合楼板平面内实际刚度的假定。对于这些形状复杂的楼板,由于楼板平面内刚度有较大削弱且不均匀,楼板平面内的变形会使楼层内抗侧力刚度较小的构件的位移和内力加大,再采用刚性楼板假定就不能保证这些构件的计算结果的可靠性。
应特别指出,在采用符合楼板实际刚度的假定进行结构整体计算时,应补充计算结构在刚性楼板假定下的位移比(楼层最大位移和楼层层间位移之比)、周期比(扭转为主的自振第一周期与平动为主的自振第一周期之比)和楼层侧向刚度比。

3.2.3 抗震设计的多层框架结构采用独立基础,在室外地面以下靠近地面处设置拉梁层时,结构整体计算模型选取不当。
原因分析:室外地面以下靠近地面处设置拉梁的多层框架结构,在进行整体抗震计算时,仅假定上部结构嵌固在拉梁顶面处进行一次性整体计算。这种计算方法虽然可以使底层柱在拉梁顶面以上的配筋较为合理,但拉梁层以下基础顶面以上框架柱的配筋、底层顶板框架梁的配筋以及底层拉梁的配筋就未必合理。因为,柱的真正嵌固在基础顶面。
改进措施:应再补充一次结构整体计算。其方法是,仍将拉梁层设置为一层,将上部结构嵌固于基础顶面进行计算。多层框架结构设置室外地面附近的拉梁层后,回填土会有一定的约束作用,但与真正的地下室有很大的区别,回填土的相对刚度比取多少合适,影响因素很多,很难定量确定。回填土的相对刚度比取值大了,会使拉梁及底层顶板框架梁的配筋偏少,反之,又会使框架柱的配筋偏少。所以,框架梁(含拉梁)和柱的最终配筋宜取上述两次计算结果中的较大值。
多层框架结构设置拉梁在基础顶面以上时,应定义拉梁层楼板全房间开洞,并采用弹性楼板总刚分析;拉梁的抗震构造措施应符合框架梁的要求,不设箍筋加密区或箍筋直径不符等,都是不正确的。整体计算时也不能遗漏拉梁上可能存在的填充墙等荷载。

3.2.4 底部带转换层的高层建筑结构,未正确计算转换层上部结构与下部结构的侧向刚度比。
原因分析:底部带转换层的高层建筑结构,由于竖向抗侧力构件不连续,转换层上部结构与下部结构的侧向刚度会发生突变,为了防止落地剪力墙过早的开裂和破坏,必须对这种刚度突变加以限制。因此《高规》JGJ3要求底部带转换层的高层建筑结构,其转换层上部结构与下部结构的侧向刚度比及其限值应正确计算并应符合该规程附录E的规定。
改进措施:对于底部带转换层的高层建筑结构,转换层上部结构与下部结构的侧向刚度比应采用以下方法计算:
(1)底部大空间为1层时,采用“等效剪切刚度法”来计算转换层上、下层结构的刚度比γ。γ宜接近1,非抗震设计时不应大于3,抗震设计时不应大于2。γ可按下式计算:
γ=(G2A2/G1A1)×(h1/h2)
式中,各符号的意义见《高规》附录E。
(2)底部大空间层数大于l层时,采用“等效侧向刚度法”来计算转换层上、下层结构的刚度比γe。γe宜接近l,非抗震设计时不应大于2,抗震设计时不应大于l.3。γe可按下式计算:
γe=Δ1H2/Δ2H1
式中,各符号的意义见《高规》附录E。
要注意的是,H1和H2不能取错了。H1为转换层及其下部结构(计算模型1)的高度,如图3.2.4(a)所示;当上部结构嵌固于地下室顶板时,取地下室顶板至转换层结构顶面的高度;H2为转换层上部若干层结构(计算模型2)的高度,如图3.2.4(b)所示,其值应等于或接近计算模型1的高度H1,且不大于H1。
(3)当转换层设置在3层及3层以上时,除了采用“等效侧向刚度法”来计算转换层上下层结构的刚度外,还应按照“层剪力与层间位移之比”的方法计算,并使转换层本层的侧向刚度不应小于转换层相邻上一层侧向刚度的60%。当底部大空间层数为2层或1层时,该控制值可取50%。
此外,转换层是楼层竖向抗侧力构件不连续的薄弱层,不管程序判断转换层是否满足上述刚度比要求,都应将转换层设置为薄弱层进行计算。

3.2.5 框架—剪力墙结构在基本振型地震作用下,若框架部分承受的地震倾覆力矩大于结构总地震倾覆力矩的50%时,框架抗震等级划分不当。
原因分析:框架-剪力墙结构是由框架和剪力墙组成的结构体系。在通常情况下,这种结构体系中的柱与剪力墙相比,其抗剪刚度是很小的,在地震作用下,楼层的地震剪力主要由剪力墙承受,框架柱只承受很小的一部分。由于框架-剪力墙结构中框架部分承担的地震倾覆力矩Mc=Σ(i=1~n)Σ(j=1~m)Vijhi,故在通常情况下,框架部分承担的地震倾覆力矩也只占结构总地震倾覆力矩的很小一部分。这样的结构,其框架部分的抗震等级,应按《抗震规范》GB50011表6.1.2或《高规》JGJ3表4.8.2中类型为框架-剪力墙的结构来划分。
当框架-剪力墙结构在基本振型地震作用下,框架部分承担的地震倾覆力矩大于结构总地震倾覆力矩的50%时,情况就不一样了。这时,剪力墙的作用降低,框架部分成为较主要的抗侧力构件,要承担较大的地震倾覆力矩。在这种情况下,为了保证结构的安全,应当加强框架部分的抗震能力。
改进措施:当框架-剪力墙结构在基本振型地震作用下,框架部分承担的地震倾覆力矩大于结构总抗震倾覆力矩的50%时,框架部分的抗震等级不应按规范框架-剪力墙结构中的框架来划分,而应按相同高度的纯框架结构根据《抗震规范》第6.1.2条或《高规》第4.8.2条来划分,柱的轴压比也应按纯框架结构的规定来限制。这种结构的适用高度和高宽比限值则可取框架结构和剪力墙结构两者之间的值,其值的大小可视框架部分承担的地震倾覆力矩的百分比接近零时,取接近剪力墙结构的适用高度和高宽比限值;当框架部分承担的百分比接近100%时,取接近框架结构的适用高度和高宽比限值。

3.2.6 抗震设计时,框架结构设有少量混凝土墙体,设计未考虑这部分墙体,仅按纯框架结构进行结构分析、配筋计算。
原因分析:由于剪力墙的存在,使得结构的地震作用增大,且由于剪力墙抗侧力刚度比框架大,故剪力墙按构造配筋不一定能满足承载力要求,同时剪力墙与框架协同工作,使框架上部受力加大,故按框架结构设计的这部分框架柱也不一定能满足承载力要求。因此,设计不考虑这部分墙体,仅按纯框架结构进行结构分析、配筋计算,无论对框架还是剪力墙都未必是安全的。
改进措施:抗震设计的框架结构中,当布置少量剪力墙时,结构分析计算不仅要按纯框架计算,也应按剪力墙与框架的协同工作考虑框架部分的抗震等级应按框架结构划分,剪力墙部分的抗震等级可取与框架相同的抗震等级。
当楼、电梯间位置较偏而产生较大的刚度偏心时,宜采取将此种剪力墙减薄、开竖缝、开结构洞、配置少量单排钢筋等措施,减小剪力墙的作用,并宜增加与剪力墙相连的柱子的配筋。
当多层框架按纯框架结构计算但不能满足框架结构层间位移限值而需要布置少量纵、横向剪力墙时,这样的结构既要按框架-剪力墙结构计算,保证剪力墙的承载能力和结构整体位移满足规范的要求,也要按框架结构(不计入剪力墙)计算,保证框架结构的承载能力和弹塑性层间位移符合规范的规定。

3.3 计算内容及参数设置
3.3.1 质量和刚度分布明显不对称、不均匀的高层建筑结构,抗震计算时仅计入双向水平地震作用下的扭转影响,但未在计算单向地震作用时考虑偶然偏心的影响。
原因分析:《抗震规范》GB50011和《高规》JGJ3都以强制性条文的形式强调,在抗震设计时,对质量和刚度分布明显不对称、不均匀的结构,应计算双向水平地震作用下的扭转影响。所谓“质量和刚度分布明显不对称、不均匀”的结构,一般是指在刚性楼板假定下,在考虑偶然偏心影响的单向水平地震作用下,楼层最大位移与平均位移之比超过位移比下限1.2较多(例如,对A级高度的高层建筑大于1.4;对B级高度的高层建筑或复杂高层建筑大于1.3)的结构。由于结构平、立面布置的多样性、复杂性,即使是对同一类型的结构,或同一结构的不同构件,大量计算分析表明,计算双向水平地震作用并考虑扭转影响与计算单向水平地震作用并考虑偶然偏心的影响相比,前者并不总是最不利的。
改进措施:所以,结构设计时,除计算双向水平地震作用并考虑扭转的影响外,宜根据《高规》第3.3.3条的规定,还应计算单向水平地震作用并考虑偶然偏心的影响,并取二者中的最不利情况进行结构设计。反过来,质量和刚度分布较对称、较均匀的高层建筑结构,仅考虑偶然偏心影响的单向地震作用就可以了。
应当指出,抗震设计时,除高层建筑外,根据《抗震规范》第5.2.3条及其条文说明,对于多层建筑,除平面规则的可通过考虑扭转耦联计算来估计水平地震作用的扭转影响外,凡属该规范第3.4.2条所指的平面不规则多层建筑,如图3.3.l-1、2、3,亦应考虑偶然偏心的影响。


3.3.2 高层建筑抗震设计时,当结构有斜交抗侧力构件且交角大于15o时,未进行斜交抗侧力构件方向的水平地震作用计算。
改进措施:地震作用实质上是地震引起的地面运动而使建筑物发生强迫振动的一种作用。由于地震作用的大小和方向的复杂性和不确定性,虽然《抗震规范》GB50011允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算,各方向的水平地震作用由该方向的抗侧力构件承担,但当结构有斜交抗侧力构件且交角大于15o时,为了保证结构的安全,《抗震规范》又规定,应补充计算各斜交抗侧力构件方向的水平地震作用。结构设计时,应取主轴方向和各斜交抗侧力构件方向地震作用效应组合的最不利情况。

3.3.3 不规则框架或高烈度地震区的框架,整体计算时,框架柱的计算长度系数仅采用《混凝土规范》表7.3.11-2中的值,而未按该规范7.3.11条第3款的公式计算。
原因分析:《混凝土规范》GB50010表7.3.1l-2中提供的框架柱计算长度系数,是在对结构进行弹性分析的基础上结合工程经验确定的经验系数,仅适用于一般多层建筑中梁、柱为常用截面尺寸的刚接规则框架结构。对框架结构二阶效应的研究表明,竖向荷载在有侧移框架中引起的P—Δ效应会增大由水平荷载在柱端截面中引起的弯距Mh,而原则上不增加由竖向荷载引起的弯距Mv。分析研究表明:当Mv与Mh之比偏小时,仍根据现行规范的η—l0法,按《混凝土规范》表7.3.1l-2取用柱计算长度,对柱子的配筋计算是偏于不安全的。
对于不规则框架,在下列情况下,采用上述经验系数来计算框架柱的计算长度对结构偏于不安全或导致误差较大:(1)框架的柱、梁线刚度比过大时;(2)框架各跨跨度相差较大,或各跨荷载相差较大时;(3)复式框架等复杂框架结构;(4)框架-剪力墙结构中的框架,框架-核心筒结构中的框架等。
在高烈度地震区,由于地震作用产生的弯矩设计值占总弯矩设计值的比例很大,也不宜采用经验系数来确定框架柱的计算长度。因此,《混凝土规范》第7.3.11条第3款规定,当水平荷载产生的弯距设计值占总弯矩设计值的75%以上时,框架柱的计算长度,按规范式式(7.3.1l-1)和式(7.3.1l-2)中的较小值作为计算长度的取值依据。同时提供的计算公式表明,框架柱的计算长度系数与框架柱、梁的线刚度比相关,物理概念明确,更能真实地反映框架柱失稳时的临界状态,有助于消除采用较小经验系数给结构带来的不安全性。
改进措施:轴心受压和偏心受压柱的计算长度l0可按《混凝土规范》第7.3.11条的规定,根据具体工程实际计算。
另外,应当指出:1.由于我国钢筋混凝土多高层房屋结构在设计中通常均按有侧移进行结构分析,因此结构工程师在框架结构电算时,应当在总信息输入的“柱计算长度计算原则”一栏内,确认框架为有侧移框架。2.由于电算程序可能有的局限性,当某些框架柱在楼层处并不总是两个主轴方向均有框架梁相连时,应输出柱的计算长度系数,如发现柱的计算两个主轴方向长度系数与结构的实际情况不符,则应人为干预和修正,以保证柱的配筋安全。

3.4 计算结果分析与应用
3.4.1 A级高度的高层建筑结构整体计算时,在刚性楼板假定下,考虑偶然偏心的位移比超过l.5或周期比大于0.9(复杂高层建筑结构、钢-混凝土混合结构的周期比大于0.85)、或第一振型为扭转振型时,未对结构的平面布置做必要的调整。
原因分析:国内外历次大地震的震害表明,平面不规则、质量与刚度偏心和抗扭刚度太弱的结构,在地震时会遭受严重的破坏。国内模拟地震振动台模型试验结果也显示,扭转效应会导致结构的严重破坏。按《高规》JGJ3第4.3.5条的规定:A级高度的高层建筑结构整体计算时,在刚性楼板假定下,若考虑偶然偏心的位移比超过1.5,或周期比大于0.9(复杂高层建筑结构、钢筋混凝土混合结构的周期比大于0.85),或第一振型为扭转振型时,表明:(1)结构的抗侧力构件布置不合理,导致结构楼层刚心与质心偏移较大;(2)平面虽然对称,但核心筒断面太小,结构整体抗扭刚度不足。此时,应对结构平面布置进行调整,减小结构平面布置的不规则性,避免产生过大的偏心和扭转。
改进措施:对结构平面布置进行调整的方法主要是:(1)在可能条件下,将较长的建筑物或不规则的建筑物通过设防震缝分为平面规则的几部分;(2)尽量加强周边或周边某些部位的结构抗侧力构件(框架梁、柱或剪力墙,主要是剪力墙)的刚度,同时适当弱化内部结构的抗侧力构件的刚度;(3)适当加大核心筒的抗扭刚度。
结构平面布置经调整后,如仍有个别指标略为超过设计规范的规定时,则可通过适当提高抗震等级等措施对结构或结构某些构件予以加强。
必要时应按照建设部的有关规定,通过超限抗震专项审查来保证这类不规则结构的安全。

4 楼板
4.1 楼板荷载及计算
4.1.1 结构整体计算时,风荷载、填充墙荷载等未正确输入。
原因分析:采用计算机进行结构整体计算时,除漏输楼面荷载(如漏输地下室顶板填土荷载、建筑装修荷载等)外,未正确输入的荷载主要有:风荷载、填充墙荷载、隔墙荷载、楼(电)梯荷载和阳台荷载等。
改进措施:
(1)地震区的多层建筑,在整体计算时,应输入风荷载。因为,对高层建筑以外的多层建筑,虽然风荷载不参与地震作用效应和其他荷载效应的基本组合,但不输入风荷载,不计入风荷载的作用,将会使地基和基础的设计不安全。
此外,在低烈度地震区,当风荷载较大时,上部结构常常是由不考虑地震作用效应参与的基本组合控制,不输入风荷载,将会影响上部结构的安全。
(2)对于高层建筑,在输入风荷载时,如果房屋特别重要,且房屋高度超过60m时,则宜按100年一遇的风压输入,而不应按50年一遇的基本风压输入。
(3)填充墙通常是指框架梁、柱间的砌体墙或填堵剪力墙洞口的砌体墙。填充墙作用在梁上应按线荷载输入,不宜折算成等效均布荷载按楼面荷载输入。按楼面荷载输入会使填充墙所在的框架梁的设计偏于不安全。
(4)隔墙通常是指砌筑在楼板上的分隔房间用的墙体。隔墙虽然以线荷载的形式作用在楼板上,但不应仅在墙下的楼板内配置两根或三根构造加强筋,应将隔墙线荷载折算成等效均布荷载与楼面其他荷载进行组合参与楼板的配筋计算。
固定隔墙的线荷载应折算成等效均布永久荷载;非固定隔墙的线荷载可折算成等效均布活荷载,《荷载规范》规定其值应取每延米长墙重(kN/m)的1/3,且不小于1.0 kN/m2。
(5)在楼面荷载输入时,楼梯间的荷载不能漏输。楼梯荷载输入前,首先要确定该楼梯是民用建筑的普通楼梯还是人员密集的楼梯,如是人员密集的楼梯,其楼梯活荷载标准值应取3.5kN/m2,而不是2.0kN/m2或2.5kN/m2。
楼梯间的荷载按均布荷载输入时,应指定楼梯均布荷载向其支承梁方向传递。在楼面荷载输入时,如楼梯间的荷载均输入为零,则应通过手算将楼梯荷载换算成线荷载输入到相关楼面梁上,以免荷载丢失,影响结构安全。
(6)阳台活荷载标准值通常应取2.5kN/m2。临街的阳台或人群有可能密集时,活荷载标准值应适当加大。作用在阳台上的荷载,可按均布面荷载输入,也可换算成线荷载作用在其支承梁上。

4.1.2 大开间剪力墙结构的外墙较薄(例如厚度为160mm),现浇楼板设计时假定板沿外墙的支承边为固支,施工图中在该处配置的上部受力纵向钢筋的直径较粗(例如?16),在常用的混凝土强度等级情况下,上部受力纵向钢筋由于锚固不良不能充分发挥其抗拉强度设计值,使板的设计存在隐患。
原因分析:大开间剪力墙结构的现浇楼板,若在设计时假定沿外墙的支承边为固支,则要求沿该支承边按计算所需配置的上部纵向受力钢筋在外墙中的锚固长度符合图4.1.2的要求(注:该图要求板的负筋伸进墙内长度大于或等于0.4la,下弯15d)。在常用的混凝土强度等级情况下,当受力钢筋的直径为?16mm时,在外墙内的最小水平锚固长度0.4la见表4.1.2,由该表可见其长度超过外墙厚度160mm,因而钢筋的锚固性能不良、不能充分发挥其抗拉强度设计值,导致沿上部钢筋方向板的内力(弯距)增大,可能造成使用状态下的裂缝宽度增加和受弯承载力不足,存在隐患。
改进措施:大开间剪力墙结构的外墙较薄时,现浇楼板沿外墙支承边,在楼板设计时宜按简支假定进行计算,并沿外墙按《混凝土规范》第10.1.7条的规定配置上部构造钢筋,其直径不宜小于8mm,间距不宜大于200mm,其截面面积不宜小于板跨中相应方向纵向钢筋截面面积的1/3。在设计时应按图4.1.2选择其钢筋直径满足锚固长度的要求。

4.2 楼板配筋及构造
4.2.1 现浇钢筋混凝上楼(屋)面板设计时,只注意了受力钢筋的配筋计算,未合理布置构造钢筋和分布钢筋。
原因分析:钢筋混凝土板的构造钢筋主要是指:(1)板简支边的上部构造负筋;(2)板的受力钢筋与其支承梁平行时,沿梁方向布置的与梁垂直的上部构造负筋;(3)控制温度、收缩的构造钢筋。
改进措施:合理布置构造钢筋,就是要按《混凝土规范》的规定,满足构造钢筋的最小直径、最大间距限值要求,并保证构造钢筋有必要的配筋面积。比如上述第(1)、(2)项的构造钢筋,因跨度、板厚较大,规范要求其直径不宜小于8mm,间距不宜大于200mm,配筋面积不宜小于受力钢筋面积的三分之一。
“配筋面积不宜小于受力钢筋面积的三分之一”这一条,有两种不同的理解。一种是,不论受力钢筋和构造钢筋是否采用同一强度等级的钢筋,一律将受力钢筋面积除3作为构造钢筋的配筋面积;另一种是,当受力钢筋的强度等级高于构造钢筋时,将受力钢筋的面积换算成与构造钢筋强度等级相同的钢筋的面积,然后除以3作为构造钢筋的配筋面积。显然,后一种构造钢筋配筋方法是正确的。
控制板温度、收缩裂缝的构造钢筋,按规范要求间距为150~200mm,最少配筋面积不宜小于板截面面积的0.1%;并应在板的未配筋表面布置温度、收缩钢筋。
钢筋混凝土板的分布钢筋,主要是指:(1)单向板底面处垂直于受力方向的分布钢筋;(2)垂直于板支座负筋的分布钢筋;除沿受力方向布置受力钢筋外,尚应在垂直受力方向布置分布钢筋。分布钢筋的直径不宜小于6mm,间距不宜大于250mm(集中荷载较大时,间距不宜大于200mm);单位长度上分布钢筋的截面面积不宜小于单位宽度上受力钢筋截面面积的15%,且不宜小于该方向板截面面积的0.15%。如图4.2.1所示。
应当指出,对普通梁板类受弯构件,当混凝土强度等级采用C20~C35、受力钢筋选用HRB335级钢筋或HRB400级钢筋时,可以获得较好的性价比。


4.2.2 设计折板式楼梯时,平台板段的板厚小于斜梯板段的板厚,板底纵向受力钢筋在内折角处未交叉锚固在板的受压区la。
原因分析:现浇钢筋混凝土板式楼梯当平台板处由于种种原因不允许布置梁时,常常设计成折板式楼梯。设计折板式楼梯时,应使平台板段的板厚等于斜梯板段的板厚。因为,折板式楼梯平台板段的长度与整个折板式楼梯跨长之比是变化的;如果平台板段的板厚小于斜梯板段板厚,当平台板段的长度较大时,取折板式楼梯跨中弯矩按斜梯板厚度算出的板的配筋很可能无法保证楼梯板内折角处截面的安全。为了简化配筋计算,工程习惯上总是使折板式楼梯水平板段的板厚等于斜梯板段的板厚。
改进措施:折板式楼梯在配筋时,不应让板底纵向受力钢筋在内折角处连续通过,而应使板底纵向受力钢筋在内折角处交叉锚固la,如图4.2.2所示。因为板底纵向受力钢筋在内折角处连续通过时,纵向受力钢筋的合力会使内折角处板的混濒土保护层向外崩出,从而使钢筋失去粘结锚固力(钢筋和混凝土之间的粘结锚固力是钢筋和混凝土能够共同工作的基础),最终可能导致楼梯板折断而破坏。


4.2.3 刀把形板配筋计算及配筋构造有误。
改进措施:刀把形板如图4.2.3所示,在设计时将小板AGEF作为大板ABCDE的支座板,板AGEP除了承受自身荷载外,还承受大板传来的荷载,刀把形板的内力计算宜采用计算机软件进行。
配筋构造上要保证大板的受力钢筋放在支座板(小板)受力钢筋之上。如图4.2.3所示,当小板A-E方向跨度较大时,还应在AE附近配置板底附加正钢筋。


4.2.4 同一区格内局部降板时,配筋计算及构造有误。
改进措施:同一区格内,当板面标高不同时(例如住宅建筑中同一区格内的楼板因局部设置标高较低的厨房、卫生间等),若标高不同的相邻板块边界为一条直线,则可在边界处设次梁或暗梁,按各小板块进行配筋设计;梁、板整体现浇。若相邻板块的边界为折线无法在边界处设次梁或暗梁,按整个区格为一块大板进行配筋设计。如图4.2.4(a)、(b)所示。


4.3 特殊部位楼板加强措施
4.3.1 带转换层的高层建筑,转换层楼板的受力钢筋未在边梁或墙体内锚固laE(la),楼板边缘和较大洞口边未设边梁。
原因分析:带有转换层的高层建筑结构,由于竖向抗侧力构件不连续,其框支剪力墙的大量剪力在转换层处要通过楼板才能传递给落地剪力墙,因此必须加强转换层楼板的刚度和承载力,以保证传力直接和可靠。但在工程设计中,有相当数量的设计者仅按《高规》要求在转换层楼板内配置了双层双向钢筋,却没有将钢筋应在边梁或边墙内锚固laE(la)。
改进措施:《高规》JGJ3要求转换层楼板应采用现浇楼板,板的厚度不宜小于180mm,混凝土强度等级不应低于C30,应双层双向配筋,且每层每方向的配筋率不宜小于0.25%,并要求楼板中的钢筋应锚固在边梁或墙体内laE(la),如图4.3.l-1所示。
《高规》还要求,落地剪力墙周围的转换层楼板和筒体外周围的转换层楼板不宜开洞;转换层楼板边缘和较大洞口周边应设置边梁,其宽度不宜小于楼板厚度的2倍,纵向钢筋的配筋率不应小于l.0%,如图4.3.l-2所示,边梁钢筋接头宜采用机械连接或焊接。设置边梁以及要求钢筋接头采用机械连接或焊接,也是工程设计中容易被忽视的问题。
此外,《高规》还要求,与转换层楼板相邻的楼板应适当加强,可理解为包括板厚和配筋的加强,工程设计中也应受到重视。


4.3.2 建筑物有多层地下室,当地下一层外墙内移时,未在墙下布置楼面梁和柱,也未加强墙下两侧的楼板。
原因分析:建筑物有多层地下室时,由于建筑功能的需要,有时会要求房屋纯地下室一侧或两侧的部分地下室外墙在地下一层内移,使地下室在地下一层底板处形成部分不落地的剪力墙深梁。
地下室的地下一层外墙内移后,该墙除承受地下室结构楼盖传来的荷载和自重外,尚要承受土压力、水压力(当地下水位较高时)、地面荷载等水平荷载的作用,而且在地震区当此种墙距上部结构较近但不是上部结构的一部分时,墙平面内仍会有水平地震作用引起的内力。所以,地下室的地下一层外墙内移后,受力更为复杂。为了保证内移后的地下室外墙能安全可靠地受力和传力,除了按工程习惯把这种墙作为仅承受水平荷载作用的受弯墙板(挡土墙)计算配筋外,应在墙下设楼面梁或柱。墙下的楼面梁和柱其配筋除满足计算要求外,构造措施尚应符合相应抗震等级(或非抗震)的框支梁、框支柱的有关规定。
改进措施:为了承受墙底(挡土墙底)由土压力等水平荷载产生的弯矩,宜适当加厚墙底两侧楼板的厚度,并采用双层双向配筋,以避免墙下的楼面梁受到过分的扭转,如图4.3.2所示。

5 梁
5.1 梁的计算
5.1.1 8度、9度抗震设计时,高层建筑中的大跨度和长悬臂结构未考虑竖向地震作用。
改进措施:《高规》JGJ3规定,下列情况应考虑竖向地震作用的影响:(1)9度抗震设防的高层建筑;(2)8度、9度抗震设防的大跨度或长悬臂结构;(3)8度抗震设防的带转换层结构的转换构件;(4)8度抗震设防的连体结构的连接体。
“大跨度或长悬臂”有两种情况:一是一幢建筑物只有个别构件为长悬臂或大跨度构件,二是结构本身为长悬臂或大空间,但不管哪一种情况,8度和9度时都必须考虑竖向地震作用。
关于大跨度或长悬臂的界定,通常认为:9度和9度以上时,跨度≥18m的屋架、跨度≥4.5m的悬挑梁、跨度≥1.5m的悬挑板;8度时,跨度≥24m的屋架或网架、跨度≥6.0m的悬挑梁、跨度≥2.0m的悬挑板,应考虑竖向地震作用。竖向地震作用的计算比较复杂。大跨度结构、长悬臂结构、转换层结构的转换构件、连体结构的连接体等,在没有更精确的计算手段时,一般均可采用如下方法近似考虑竖向地震作用:竖向地震作用标准值,8度和9度时可分别取该结构、构件重力荷载代表值的10%和20%;当设计基本地震加速度为0.3g时,取该结构、构件重力荷载代表值的15%。

5.1.2 框架结构的边梁,当无外挑板或现浇楼板刚度较大时,将楼板与梁按刚接设计,且未配置边梁的抗扭箍筋和纵筋。
原因分析:楼板与框架结构的边梁按刚接设计时,边梁受扭,未配置边梁的抗扭箍筋和纵筋,会造成梁的抗扭承载力不满足要求。若分析软件对梁的扭矩折减整个结构仅用同一个系数,这可能会使边梁的计算扭矩比实际受力小,即使按计算扭矩配置边梁的抗扭箍筋和纵筋,也可能会造成梁的抗扭承载力不满足要求。
改进措施:应根据实际结构算出边梁的扭矩(边梁的扭矩不宜折减),据此算出其抗扭箍筋和纵筋,并应满足抗扭构造配筋要求。但当楼板与框架结构的边梁按铰接设计时,或合理布置楼(屋)面结构时,若边梁不受扭,一般可不配置抗扭箍筋和纵筋或仅配置抗扭构造钢筋。

5.1.3 将弧线形梁简化成直线形梁计算内力及配筋,未配置抗扭箍筋和纵筋。
原因分析:弧线形梁是空间曲梁,截面内力除弯距、剪力外还有扭矩。因而不配置抗扭箍筋和纵筋,会造成此梁的抗扭承载力不满足要求。
改进措施:应根据实际结构算出弧线形梁的扭矩,据此算出其抗扭箍筋和纵筋,并应满足抗扭构造配筋要求。

5.1.4 框架梁上有次梁时,梁的箍筋配置,支座附近区段根据梁支座边缘处截面的剪力设计值计算并满足构造要求;但梁中间区段则只是简单将支座附近的箍筋间距加大一倍配置,不满足抗剪承载力要求。
原因分析:框架梁跨中有次梁或承受较大集中力时,其截面剪力设计值往往在整个跨内相差不大,不根据梁的具体受力情况,仅简单地将支座附近的箍筋间距加大一倍配置在跨中各处,有可能造成跨中各截面抗剪承载力不足。
改进措施:除选取框架梁支座边缘处截面计算外,尚应选取有次梁或有较大集中力处截面作为剪力设计值的计算截面;对变截面梁、箍筋配置有变化的梁、配置弯起钢筋抗剪的梁,尚应按《混凝土规范》GB50010第7.5.2条的规定,确定若干个剪力设计值的计算截面,计算其抗剪承载力并根据构造要求配置箍筋。

5.1.5 主梁下部或其截面高度范围内作用集中荷载(比如有次梁)时,认为经计算配置的箍筋已满足截面抗剪承载力要求,故没有配置附加横向钢筋。
原因分析:当集中荷载在梁高范围内或梁下部传入时,为防止集中荷载影响区下部混凝土拉脱并弥补间接加载导致的梁斜截面受剪承载力的降低,应在集中荷载影响区范围内加设附加横向钢筋。不允许用布置在集中荷载影响区内的受剪钢筋代替附加横向钢筋。
改进措施:应按《混凝土规范》GB50010第10.2.13条要求设置附加横向钢筋。附加横向钢筋宜采用箍筋,也可采用吊筋或箍筋加吊筋,如图5.1.5-1、2所示。附加横向钢筋所需的总截面面积按下式计算:
Asv=F/(fyv sinα)
式中:  Asv-承受集中荷载所需的附加横向钢筋总截面面积;当采用附加吊筋时,Asv应为左、右弯起段截面面积之和;
     F—作用在梁的下部或梁高范围内的集中荷载设计值;
     α—附加横向钢筋与梁轴线间的夹角。
当传入集中力的次梁宽度b过大时,宜适当减小由(2h1+2b)所确定的附加横向钢筋布置宽度,当次梁与主梁高度差h1过小时,宜适当增大附加横向钢筋的布置宽度。
当有两个沿梁长度方向相互距离较小的集中荷载作用于梁高范围内时,可能形成一个总的拉脱效应和一个总的拉脱破坏面。偏安全的做法是,在不减少两个集中荷载之间应配附加横向钢筋数量的同时,分别适当增大两个集中荷载作用点以外的附力口横向钢筋数量。


5.1.6 支承在地下室外墙上的大跨度梁,由于要求承受消防车荷载、覆土荷载等,梁截面高度远大于外墙厚度,支承处外墙上未设置扶壁柱或暗柱等措施,而计算时却按梁端与外墙刚接来考虑梁跨中的配筋,与结构实际受力情况不符。
改进措施:支承在地下室外墙上的梁,应根据其支座实际约束情况进行内力和配筋计算,较大跨度的梁宜在支座处墙内设置扶壁柱或暗柱等措施。
当梁端与外墙交接处不具备刚接条件时,梁跨中配筋应按梁端与外墙铰接进行内力和配筋计算,否则不安全。

5.2 梁的配筋构造
5.2.1        梁纵向受力钢筋水平方向的净间距不满足规范规定。如:梁宽为250mm,经计算支座负筋面积为1964mm2,用4?25一排配置,如图5.2.l-l所示。
原因分析:为了使混凝土对钢筋有可靠而足够的握裹力,保证两者共同工作,《混凝土规范》第10.2.1条规定:梁上部纵向钢筋水平方向的净间距c'(钢筋外边缘之间的最小距离)不应小于30mm和1.5d(d为上部钢筋的最大直径);下部纵向钢筋水平方向的净间距c不应小于25mm和d。梁的下部纵向钢筋配置多于两层时,两层以上钢筋水平方向的中距应比下面两层的中距增大一倍。各层钢筋之间的净间距c不应小于25mm和d(d为下部钢筋的最大直径),如图5.2.1-2所示。而图5.2.l-1梁上部纵向钢筋的配置显然不满足规范要求。
改进措施:解决此类问题的办法通常有:加大钢筋直径减少钢筋根数或改配两排筋或加大梁宽等。

5.2.2 框架梁端截面的底部和顶部纵向受力钢筋截面面积的比值不符合规范规定,如一级抗震比值小于0.5,二、三级抗震比值小于0.3。
原因分析:考虑由于地震作用的随机性,在较强地震下梁端可能出现较大的正弯矩,该正弯矩有可能大于考虑多遇地震作用的梁端组合正弯矩。若梁端下部纵向受力钢筋配置过少,将可能发生下部钢筋的过早屈服甚至拉断。提高梁端下部纵向受力钢筋的数量,也有助于改善梁端塑性铰区在负弯矩作用下的延性性能。因此,在梁端箍筋力口密区内,下部纵向受力钢筋不宜过少,下部和上部钢筋的截面面积应符合一定的比例。
改进措施:《混凝土规范》GB50010第11.3.6条第2款规定:框架梁端截面的底部和顶部纵向受力钢筋截面面积的比值,除按计算确定外,一级抗震等级不应小于0.5,二、三级抗震等级不应小于0.3。此条为强制性条文,应严格遵守,设计时应根据内力调整配筋,满足规范规定。

5.2.3 承受均布荷载的不等跨连续梁,中间跨支座负筋需截断时,均在本跨内距支座1/3ln(ln为本跨净跨长)处截断,错误做法如图5.2.3-1所示。

原因分析:在连续梁的中间,支座负弯矩纵向受拉钢筋在向跨内延伸时,应根据弯矩包络图在适当位置截断。对不等跨连续梁,小跨的弯矩包络图表明往往在跨中和支座均有负弯矩,甚至两者弯矩值接近。这种情况下,若支座负弯矩纵向受拉钢筋均在本跨内距支座1/3ln(ln为本跨净跨长)处截断,则很可能造成本跨梁跨中1/3ln范围内各截面的负弯矩承载能力不足。
改进措施:钢筋混凝土梁中间支座负弯矩纵向受拉钢筋截断时,《混凝土规范》GB50010第10.2.3条有明确规定。施工图设计时,当相邻跨度相差小于20%,通常的做法是支座负筋在本跨内的截断位置到支座的距离应为相邻跨较大净跨的1/3ln,当相邻跨度相差大于20%时,支座负筋长度应按弯矩包络图确定。如图5.2.3-2(a)所示;当中间跨很小时,则本跨负筋往往直通,如图5.2.3-2(b)所示。


5.2.4 简支梁或连续梁简支端的下部纵向受力钢筋伸入梁支座范围内的锚固长度las不满足规范规定。如支承在框架主梁(梁宽300mm)上的钢筋混凝土次梁(简支梁),混凝土强度等级为 C25,距次梁支座边1.2h(h为次梁截面高度)作用有一集中荷载,且V>0.7ftbh0,其下部纵向受力钢筋伸入主梁做法如图5.2.4-l所示。
原因分析:《混凝土规范》GB50010第10.2.2条对纵向受力钢筋伸入梁简支支座的锚固长度有很明确具体的规定,并且指出:对混凝土强度等级为C25及以下的简支梁和连续梁的简支端,当距支座边1.5h范围内作用有集中荷载,且V>0.7ftbh0时,对带肋钢筋宜采取附加锚固措施,或取锚固长度las≥15d。如图5.2.4-1中纵向受力钢筋伸入主梁的实际锚固长度仅275mm,小于15x22=330mm,不满足规范要求。
改进措施:(1)争取加大主梁梁宽,可取350mm;(2)在不能加大主梁梁宽的情况下,可采取附加锚固措施,如图5.2.4-2所示,此时其锚固长度las可取0.7las。


5.2.5 当需要配置受压钢筋时,梁的箍筋设置不符合规范规定。如:梁宽不大于400mm,经计算一排内配置受压钢筋5?20,箍筋用双肢箍(图5.2.5-1(a)):或梁宽大于400mm,经计算—排内配置受压钢筋4?20,箍筋用双肢箍(图5.2.5-l(b))。

改进措施:《混凝土规范》GB50010第10.2.10条第2款明确指出:当梁的宽度大于400mm,且一排内的纵向受压钢筋多于3根时,或当梁的宽度不大于400mm,但一排内的纵向受压钢筋多于4根时,应设置复合箍筋。因此,图5.2.5-l中箍筋应改为设置复合箍筋。如图5.2.5-2所示。


5.2.6 按三、四级抗震等级设计的框架结构受弯剪扭同时作用的框架梁,沿梁全长的最小箍筋配筋率仅取为0.26ft/fyv。
原因分析:设计人取最小箍筋配筋率为0.26ft/fyv的依据是《混凝土规范》GB50010第11.3.9条。但此条是针对弯剪构件的,其值是在弯剪构件非抗震设计的基础上适当增加。对受弯剪扭同时作用的梁,《混凝土规范》第10.2.12条明确规定:在弯剪扭构件中,箍筋的配筋率ρsv'=Asv/bs不应小于0.28ft/fyv。显然,按《混凝土规范》第1l.3.9条配置的最小箍筋配筋率(0.26ft/fyv)偏小。
改进措施:应满足混凝土规范第10.2.12条的要求,取梁的箍筋配筋率不小于0.28ft/fyv,应满足三、四级抗震等级加密区最大间距和最小直径的要求。

5.2.7 框架梁梁端的纵向受拉钢筋配筋率大于2.0%,但梁端箍筋加密区最小直径仅取为l0mm。
原因分析:设计人取最小箍筋直径为10mm的依据是《混凝土规范》GB50010第11.3.6条表11.3.6-2。但当梁端纵向受拉钢筋配筋率大于2%时,为了更好地从构造上对框架梁塑性铰区的受压混凝土提供约束,并有效约束纵向受压钢筋,保证梁端具有足够的塑性铰转动能力,正是此条第3款明确规定:此时,表中.箍筋最小直径应增大2mm。
改进措施:应全面、正确理解、执行混凝土规范第11.3.6条(强制性条文)。此情况下加密区范围内的箍筋直径应为12mm。

5.2.8 截面尺寸为bxh=150mmx300mm的次梁,在跨中l/2截面处作用有集中荷载,按计算不需要配置箍筋。设计时箍筋间距取用@300。
原因分析:《混凝土规范》第10.2.9条规定:当梁高度大于150mm时,当跨中l/2l范围内有集中荷载时,即使计算不需要配置箍筋,梁中仍要需按构造要求全跨配置箍筋。这是为了保证该梁有足够的抗剪承载力,避免发生梁的脆性破坏。构造配箍范围、间距分别见表5.2.8-l、2。此外,对配箍数量也有一定的要求。
表5.2.8-1  梁的构造配箍范围(mm)
截面高度(mm)        150~300        >300
        一般情况        中部l/2内有集中荷载       
配箍要求        两端1/4跨配箍        全长配箍        全长配箍

表5.2.8-2  梁的构造配箍间距(mm)
梁高h(mm)        150<h≤300        300<h≤500        500<h≤800        h>800
V≤0.7ftbh0+0.05Np0        200        300        380        400
V>0.7ftbh0+0.05Np0        150        200        280        300

改进措施:此时箍筋间距用@300不符合规范要求。应按表5.2.8-2根据剪力V的大小,箍筋间距用@150或@200。

5.2.9 抗震设计时梁顶面或底面纵向钢筋配置不满足要求,如对一、二级抗震等级框架梁,通长钢筋直径小于14mm或钢筋截面面积小于梁两端顶面或底面纵向受力钢筋中较大值的1/4。
原因分析:地震作用过程中框架梁的反弯点位置可能有变化,沿梁全长配置一定数量的通长纵向钢筋可以保证梁各个部位具有适当的受弯承载力。
改进措施:一般情况下抗震设计时梁顶面或底面配置2根直径不小于14mm的通长纵向钢筋可满足规范要求,但当梁的内力较大且配筋较多时,“分别不应少于梁两端顶面或底面纵向受力钢筋中较大截面面积的1/4”常容易忽视或不满足要求,对高烈度区大跨度框架梁,由于梁受力钢筋配置很多,往往是2根22mm直径或是更大截面面积的通长钢筋也不满足要求。设计中应特别注意,两方面均应满足。

5.2.10 体育场馆中的斜向悬挑大梁箍筋配置有误,如图5.2.10-l所示。

原因分析:由于悬挑大梁是斜向上的,与柱不是正交,因此,按图5.2.10-l所示的箍筋配置,箍筋与梁顶面垂直平行配置,则会出现在支座处附近梁的上下部箍筋间距不均匀:且梁的下部箍筋间距很大,不满足规范要求、或在梁的上部箍筋间距很密甚至摆放不下,施工困难的情况。
改进措施:(1)将箍筋垂直地面配置于梁中,此时可保证箍筋间距均匀,满足规范要求;(2)斜度不大时,也可在保证梁下部箍筋间距满足规范要求的情况下适当加密梁上部箍筋间距;(3)斜度较大时,也可在保证梁上部箍筋间距满足规范要求的情况下在梁下部适当增加箍筋,箍筋应做成封闭的套箍,箍筋四角应钩住梁的纵向受力钢筋和腰筋,此箍筋间距应满足规范要求,如图5.2.10-2所示。


5.2.11 当梁的腹板高度hw≥450mm时,梁两侧面未设置纵向构造钢筋,或虽设置纵向构造钢筋,但不管梁截面大小、配筋率多少,一律配置每侧l?12。
原因分析:当梁截面尺寸较大,有可能在梁侧面产生垂直于梁轴线的收缩裂缝,为此应在梁两侧面设置纵向构造钢筋。若纵向构造钢筋配置不足,也不能有效抗裂。
改进措施:当梁的腹板高度hw≥450mm时,应按《混凝土规范》GB50010第10.2.16条规定在梁的两个侧面沿高度设置纵向构造钢筋。根据工程经验每侧纵向构造钢筋(不包括梁上、下部受力钢筋及架立钢筋)的截面面积不应小于腹板截面面积bhw的0.1%,且其间距不宜大于200mm。此处腹板高度hw按《混凝土规范》第7.5.l条的规定取用。

5.2.12 对实际受到部分约束但按简支计算的梁端,不论梁截面大小和所配梁底受力筋的多少,均仅配置2?12架立筋。
改进措施:因为实际受到部分约束,故梁端存在一定的负弯矩,为抵抗此弯矩,防止梁端上部出现过大的裂缝,应在支座区上部设置纵向构造钢筋。其截面面积不应小于梁跨中下部纵向受力钢筋计算所需截面面积的四分之一,且不应少于2根;该纵向构造钢筋自支座边缘向跨内伸出的长度不应小于0.2L0,此处L0为该跨的计算跨度,如图5.2.12所示。

5.2.13 折梁下部纵向受力钢筋配置构造错误。如图5.2.13-1所示。

原因分析:图5.2.13-1所示将整根下部纵向钢筋弯折配置,则在竖向荷载作用下,折梁下部纵向钢筋受拉,且有拉直的趋势。可能使梁的弯折处下部混凝土崩落,导致折梁破坏。
改进措施:折梁下部纵向钢筋不应用整根钢筋弯折配置,而应斜向伸入梁顶。考虑到当这部分钢筋未完全在受压区锚固时,未锚固在受压区的钢筋纵向拉力的合力形成凹角处向下的力,于梁受力不利,故还应按《混凝土规范》第10.2.14条要求增设箍筋,如图5.2.13-2所示,该箍筋应能承受未锚固在受压区的纵向受拉钢筋的合力,且在任何情况下不应小于全部纵向钢筋合力的35%。由箍筋承受的纵向受拉钢筋的合力可按下列公式计算:
1,未在受压区锚固的纵向受拉钢筋的合力为:
NS1=2fyAs1cos(α/2)
2,全部纵向受拉钢筋合力的35%为:
NS2=0.7fyAscos(α/2)
式中:As—全部纵向受拉钢筋的截面面积;
   As1—未锚固在受压区的纵向受拉钢筋的截面面积;
   α—构件的内折角。


5.2.14 框架边梁截面尺寸bxh=200mmx400mm,经计算梁的受弯纵筋As=715.8mm2,受扭纵筋Astl=318.6mm2,误将迭加后的纵筋按图5.2.14-l所示配筋(都集中配置在梁下部)。
改进措施:根据《混凝土规范》GB50010第7.6.12条规定,对弯剪扭构件梁配筋采取分别计算最后迭加的原则是对的,但两者怎么迭加,配筋构造如何?应予以注意。简单地将两者相加,全部配置在梁的下部是错误的。
梁的受弯纵筋应配置在梁截面的下部(单筋梁)或上部和下部(双筋梁)。但梁受扭纵筋的配置,《混凝土规范》第10.2.5条规定:除应在梁截面四角设置受扭纵筋外,其余受扭纵向钢筋则宜沿梁截面周边均匀对称布置,间距不应大于 200mm和梁截面短边长度。受扭纵向钢筋应按受拉钢筋锚固在支座内。因此,除了分别计算最后迭加外,应注意配置在相应的位置上。本例中受扭纵筋应在梁截面的上、中、下部各配置2根,即上部318.6/3=106.2mm2,考虑满足架立筋的构造要求,用2?14(As=308mm2);中部用2?10(As=157.1mm2);下部纵筋715.8+106.2=822mm,用2?25(As=981.8mm2),最后纵向受力钢筋配筋如图5.2.14-2所示。
还需注意的是:
l,一般框架梁均为双筋梁,当配有受压钢筋时,分配在梁上部的受扭纵筋应和受压钢筋迭加后配置;
2.箍筋截面面积应分别按剪扭构件的受剪承载力和受扭承载力计算确定,迭加后配置在相应的位置上,并满足受扭箍筋的构造要求;
3,混凝土规范未述及抗震设计梁的受扭配筋计算,因此,对重要构件,受扭配筋宜在原计算的基础上宜适当放大。


5.3 框支梁
5.3.1 将框支梁上、下部纵向钢筋的最小配筋率按一般框架梁要求。如对抗震等级为一级的框支梁支座最小配筋率取0.4和80ft/fy中的较大值,跨中最小配筋率取 0.3和65ft/fy中的较大值。
原因分析:框支梁和一般框架梁两者在受力特点、受力大小、抗震设计时对构件的延性要求等方面有不小区别:(1)框支梁大多数情况下是偏心受拉构件,并承受较大的剪力,而一般框架梁是弯剪构件;(2)框支梁由于承受的荷载很大故构件内力也很大,而一般框架梁内力则相对较小;(3)框支梁受力复杂,而一般框架梁受力较为简单;(4)抗震设计时,对框支梁的延性要求较高。因此将框支梁按一般框架梁进行配筋设计是偏于不安全的。
改进措施:《高规》JGJ3第10.2.8条第1款规定:框支梁上、下部纵向钢筋的最小配筋率,非抗震设计时分别不应小于0.30%;抗震设计时,特一级、一级和二级分别不应小于0.60%、0.50%和0.40%。这是强制性条文,应严格按此条文进行配筋设计。

5.3.2 偏心受拉的框支梁上部的墙体上开有门洞形成小墙肢时,该部位框支梁的箍筋未加密,且未做截面抗剪验算。
原因分析:框支梁偏心受拉并承受较大的剪力,一般不宜在支座边开设门洞。当框支梁上部的墙体上开有门洞并形成小墙肢时,此小墙肢的应力集中突出,门洞边部位的框支梁弯距和剪力都急剧加大。因此除小墙肢应加强外,边门洞部位框支梁的抗剪能力也应加强,箍筋应加密布置。
改进措施:《高规》JGJ3第10.2。9条第4款规定:当框支梁上部的墙体开有门洞或梁上托柱时,该部位框支梁的箍筋应加密配置,箍筋直径、间距及配箍率不应低于高规第10.2.8条第3款的规定;当洞口靠近框支梁端部且梁的受剪承载力不满足要求时,可采取框支梁加腋或增大框支墙洞口连梁刚度等措施。

5.3.3 框支梁支座负筋按一般框架梁配置,上部仅有少量纵向受力钢筋沿梁全长贯通。
原因分析:偏心受拉的框支梁,其纵向受力钢筋计算应按偏心受拉构件而不是纯弯构件进行。由此算出的纵向受力钢筋应按规范要求沿梁全长贯通,而不能象纯弯构件那样对负筋在支座附近截断。如果框支梁支座上部仅有少量纵向受力钢筋沿梁全长贯通,则在弯矩和拉力的共同作用下,有可能会导致框支梁的破坏。
改进措施:《高规》JGJ3第10.2.8条第2款规定:偏心受拉的框支梁,其支座上部纵向受力钢筋至少应有50%沿梁全长贯通,下部纵向钢筋应全部直通到柱内。
应根据工程实际情况按此条文进行设计。当配筋计算是由跨中正弯矩和拉力组合控制时,支座上部纵向受力钢筋至少应有50%沿梁全长贯通,下部纵向钢筋应全部直通到柱内;当配筋计算是由支座负弯矩和拉力组合控制时,支座上部纵向受力钢筋应全部(100%)沿梁全长贯通,下部纵向钢筋应全部直通到柱内。

5.3.4 框支梁与框支柱或框支梁与其上的墙体截面中心线不重合偏心距较大,设计中未单独进行计算分析,也未采取合理可靠的构造措施。
改进措施:当框支梁与框支柱及框支梁与其上的墙体截面中心线重合时,通常将该框支梁与框支柱连同框支梁上的墙体单独按平面结构进行有限元计算分析,使计算模型与结构实际受力状态基本一致,计算结果才是正确可靠的。若框支梁与框支柱或框支梁与其上的墙体截面中心线不重合,偏心距较大,则平面外弯矩不可忽视,计算时若不考虑其偏心影响,又未采取合理可靠的构造措施,则可能存在安全隐患,甚至有可能导致该框支梁柱的破坏。因此,应考虑偏心所产生的平面外弯矩,或按空间结构进行有限元计算分析,并据此采取合理可靠的构造措施,如在其平面外增设次梁以平衡平面外弯矩,加大框支梁截面尺寸或力口强抗扭钢筋等。

5.4 宽扁梁
5.4.1 跨高比较大的宽扁梁未验算其正常使用阶段的挠度及裂缝宽度。
改进措施:规范或一般设计手册中推荐的确定梁的截面高度的跨高比值,是考虑一般荷载情况下得出的,根据此跨高比值确定梁的截面高度,当荷载不是很大时,一般可不进行挠度及裂缝宽度的验算(经验算满足规范规定)。但对梁宽大于柱宽的宽扁梁,特别是在荷载较大时,正常使用时宽扁梁在荷载作用下的挠度及裂缝宽度有可能超过规范的限值,因此,《高规》JGJ3第6.3.1条规定:当梁高较小或采用宽扁梁时,除验算其承载力和受剪截面要求外,尚应通过验算满足刚度和裂缝的有关要求。
在计算梁的挠度时,可扣除合理起拱值;对现浇梁板结构,宜考虑梁受压翼缘的有利影响。

5.4.2 一、二级抗震等级的框架梁,当采用梁宽大于柱宽的宽扁梁时,穿过柱子的纵向受力钢筋不足总纵向受力钢筋的60%。
改进措施:为了保证宽扁梁穿过柱子的纵向受力钢筋大于总纵向受力钢筋的60%,可采取以下措施:(1)调整宽扁梁的截面高度与宽度,尽可能使宽扁梁的截面宽度有不少于60%穿过柱子;(2)调整宽扁梁的纵向受力钢筋布置,使直径较大的钢筋穿过柱子,以满足穿过柱子的纵向受力钢筋面积大于总纵向受力钢筋的60%;(3)对于边柱节点,框架扁梁端的截面内未在柱内锚固的纵向受力钢筋应可靠地锚固在框架边粱内,如图5.4.2所示。

6.1 柱的计算
6.1.1 由于建筑功能要求,局部楼板开大洞,造成部分柱子周边均无梁,柱子长度有二、三层高(或称之为越层柱),用计算程序计算配筋时,对柱子长度计算未作处理。
原因分析:柱子的配筋计算,与柱子的计算长度关系很大。将二、三层高的长柱按一层高的柱子进行配筋计算,不安全。
改进措施:当柱子周边均无梁时,应按柱子的实际长度(即二、三层高)进行配筋计算;当柱子一个方向有梁相连,另一个方向无梁时,应按柱子的实际长度(即二、三层高)验算无梁方向柱子的承载力。

6.1.2 柱子按轴心受压柱设计时,采用配置螺旋式间接钢筋的圆形截面柱。如:柱子直径D=500mm,C40混凝土,配置HRB335级8?22纵向钢筋,HPB235级?8@50螺旋箍,计算长度l0=6.5m,根据《混凝土规范》GB50010配置螺旋式或焊接环式间接钢筋轴心受压构件承载力计算公式(7.3.2-1)、(7.3.2-2),算出此雨蓬柱的轴心受压承载力为4090.7kN。
改进措施:沿柱子高度方向配置间距较密的螺旋箍筋约束混凝土,使柱子核心区混凝土处于三向受压应力状态,既可以提高混凝土的延性,也可以提高混凝土的抗压承载能力。因此,可采用配置螺旋式间接钢筋的圆形截面柱以提高柱子的承载能力。但应用《混凝土规范》GB50010公式(7.3.2-1)、(7.3.2-2),应注意其适用条件:
(1)为使间接钢筋外面的混凝土保护层对抵抗脱落有足够的安全,按《混凝土规范》公式(7.3.2-1)算得的构件承载力不应比按式(7.3.1)算得的大50%,即Nmax=1.35ψ(fc+fy'As')。
(2)凡属下列情况之一者,不应计入间接钢筋的影响,而应按《混凝土规范》公式(7.3.1)计算:
1),当l0/d>12时,此时因长细比较大,使柱受压承载力降低;
2).当按式(7.3.2-1)、(7.3.2-2)算得的受压承载力小于按式(7.3.1)算得的受压承载力时;
3),当间接钢筋换算截面面积Asso小于纵向受力钢筋全部截面面积的25%时,此时间接钢筋配置得太少,约束混凝土作用效果不明显。
本例中l0/d=6500/500=13>12(查混凝土规范表7.3.1得ψ=0.895),长细比较大,使柱受压承载力降低,不能按式(7.3.2-1)、(7.3.2-2)计算,而只能按式(7.3.1)计算,故有Nu=0.9ψ(fc+fy'As')。=3755.7kN。

6.2 柱的配筋构造
6.2.1 柱子箍筋型式设计错误。如:截面尺寸为450mmx450mm框架柱,根据计算,每侧配置纵向受力钢筋4?18,抗剪箍筋按构造设置,截面配筋如图6.2.1-1所示。
改进措施:《混凝土规范》GB50010第10.3.2条第5款规定:当柱截面短边尺寸大于400mm,且各边纵向钢筋多于3根时,或当柱截面短边尺寸不大于400mm,但各边纵向钢筋多于4根时,应设置复合箍筋。图6.2.1-l中箍筋配置不符合上述规定,应设置复合箍筋,如图6.2.l-2所示。

6.2.2 抗震等级为三、四级的底层框架柱加密区箍筋间距均采用150mm。
改进措施:为保证抗震设计时框架柱塑性铰不首先出现在柱根处,《抗震规范》GB50011表6.3.8-2规定:三、四级底层框架柱柱根加密区箍筋间距应采用100mm和8d(d为纵向受力钢筋直径)中的较小值,其他部位加密区箍筋间距应采用150mm和8d中的较小值。即柱根加密区箍筋间距比其他部位要严。不区分柱根和其他部位,均采用150mm,不符合上述规定。此条为强制性条文,应严格按规范执行,

6.2.3 柱子箍筋间距设计错误。如:抗震等级为一、二级的框架柱纵向受力钢筋直径为18mm,柱非加密区箍筋间距采用200mm。
原因分析:《抗震规范》GB50011第6.3.13条规定:柱箍筋非加密区的体积配箍率不宜小于加密区的50%;箍筋间距,一、二级框架柱不应大于10倍纵向钢筋直径。因此当柱纵向受力钢筋直径为18mm时,柱非加密区箍筋间距采用200mm不满足上述要求。
改进措施:可采用箍筋间距为180mm;或将柱纵向受力钢筋直径改为20mm,此时非加密区箍筋间距可采用200mm。

6.2.4 建造在Ⅳ类场地上,房屋高度在60m以上的高层建筑,抗震等级为一级的框架角柱纵向受力钢筋采用HRB335级,其最小配筋率仅为l.2%。
改进措施:《混凝土规范》GB50010第1l.4.12条规定:对建造在Ⅳ类场地上较高的高层建筑,柱子纵向受力钢筋最小配筋百分率应按表11.4.12-l中的数值增加0.1采用。如:一级框架角柱表11.4.12-l中的数值为1.2%。故当采用HRB335级钢筋作为柱纵向受力钢筋时,此时柱的最小配筋百分率应为1.3%。

6.2.5 非抗震设计的钢筋混凝土框架柱,混凝土强度等级为C50,纵向受力钢筋采用HRB400级,直径为28mm,设计时纵向受拉钢筋的锚固长度取为750mm,不符合规范要求。
原因分析:纵向受拉钢筋的锚固长度按《混凝土规范》GB50010式(9.3.l-1)计算:la=0.14x360x28/l.89=746.67mm<750mm,表面上看是对的,而未考虑规范条文的限制条件和修正系数:当混凝土强度等级高于C40时,混凝土抗拉强度设计值ft应按C40取值;同时,《混凝土规范》第9.3.l条还规定:当HRB335、HRB400和RRB400级钢筋的直径大于25mm时,其锚固长度应乘以修正系数1.1。因此为锚固长度的计算错误。
改进措施:应按《混凝土规范》第9.3.1条的规定计算,C40的ft=1.7lN/mm’,故la=1.lx0.14x360x28/l.71=907.79mm,应取为950mm。

6.2.6 截面尺寸为250mmx250mm的小柱子,用于支承板式楼梯平台梁,混凝土强度等级C30,在构件质量无明确保证的情况下,承载力计算时取fc=14.3N/mm’。
原因分析:考虑到由于材料不均匀或施工误差等可能导致构件承载力的降低,《混凝土规范》GB50010表4.1.4注l规定:计算现浇钢筋混凝土轴心受压及偏心受压构件时,如截面的长边或直径小于300mm,则表中混凝土的强度设计值应乘以系数0.8;当构件质量(如混凝土成型、截面和轴线尺寸等)确有保证时,可不受此限制。
改进措施:一般情况下,当截面的长边或直径小于300mm时,应将表中混凝土的强度设计值应乘以系数0.8计算构件的承载力。对混凝土强度等级为C30的强度设计值应取fc=0.8x14.3=11.44N/mm 2。

6.2.7 有些柱子按组合后的控制内力计算配筋量,全截面配筋率超过5%,施工图中未采取其他措施。
原因分析:柱子的配筋率过大,会造成柱截面过小而轴压比太大,钢筋在承载力中的比重过大,而使构件受力性能不好。同时由于混凝土的徐变等原因,可能使柱产生纵向裂缝,因此,《混凝土规范》GB50010规定柱子的全截面配筋率不应大于5%。
改进措施:柱子的全截面配筋率超过5%,一般有以下原因:1)截面尺寸偏小或混凝土强度等级偏低;2)柱子的弯矩大轴力小,多层或高层建筑的顶层边柱以及大跨度单层结构边柱有时会出现这种情况;3)其他原因。设计时可根据上述具体情况采取有针对性的措施,如:1)加大柱截面尺寸或提高混凝土强度等级;2)配置高强度钢筋;3)改变传力途径或方式,减少构件内力;4)改变梁柱连接方式,如设计成梁与柱的连接为铰接等。

6.2.8 抗震设计的框架结构因设置刚性填充墙形成短柱时,柱箍筋未全高力口密。
原因分析:框架结构房屋外墙设带形窗时,往往在框架柱中部无填充墙,当在本层柱上下两端设置刚性填充墙时,刚性填充墙体的约束使框架柱中部形成短柱,地震时易造成剪切破坏。
改进措施:因设置刚性填充墙形成短柱时(柱中部净高与柱截面高度之比不大于4),应按《抗震规范》GB50011第6.3.10条第3款的规定,柱箍筋全高加密。

6.2.9 计算柱箍筋加密区的体积配箍时,未将复合箍重叠部分的箍筋体积扣除。
改进措施:《抗震规范》GB50011第6.3.12条明确提出:计算复合箍筋的体积配箍率时,应扣除重叠部分的箍筋体积。否则会造成加密区体积配箍率配置偏小,使构件抗震设计偏于不安全,现将部分配箍型式的体积配筋率分别按下列图形列出计算公式(箍筋相重叠部分不计入),供设计时参考。式中n1、n2、n3为配置在同一截面内、同一方向、截面面积相同的箍筋肢数。


6.2.10 抗震设计的高层建筑设有设备层时,设备层层高一般较小,故柱的剪跨比常常小于1.5。设计时设备层柱的轴压比限值仍按《抗震规范》GB50011第6.3.7条采用,未做特殊处理。
改进措施:柱轴压比和剪跨比的概念是柱子抗震设计的重要概念,限制框架柱的轴压比主要是为了保证框架结构的延性要求。抗震设计时,通常希望柱子的破坏为大偏心受压破坏。这是一种延性破坏。
和轴压比相比,剪跨比对框架柱的破坏特征起主导作用。试验表明:在通常的配筋条件下,当剪跨比入>2时,框架柱在横向水平剪力作用下一般情况下发生延性较好的大偏心受压破坏;当剪跨比入≤2时框架柱,在横向水平剪力作用下一般都发生脆性的剪切破坏。因此,《抗震规范》表6.3.7注2规定:剪跨比1.5≤入≤2的柱,其轴压比限值应比规范表中数值减小0.05。剪跨比入<l.5的柱,其轴压比限值应专门研究并采取特殊构造措施。比如:在柱截面中部设置芯柱、设置型钢,取用更严的轴压比限值、采用合适的箍筋形式、提高箍筋的体积配箍率、采用柱内配置X型钢筋等措施,采用柱外包钢板箍、或其他专门研究的特殊构造措施。

6.2.11 在高层建筑有错层结构时,错层处框架柱的截面高度小于600mm,抗震等级仍按一般结构确定,即同其他框架柱。未按提高一级采用,且其箍筋未全柱段加密。
原因分析:错层结构属竖向布置不规则结构;错层附近的竖向抗侧力结构受力复杂,难免会形成众多应力集中部位;错层结构的楼板有时会受到较大的削弱;剪力墙结构错层后会使部分剪力墙的洞口布置不规则,形成错洞剪力墙或叠合错洞剪力墙;框架结构错层则更为不利,往往形成许多短柱与长柱混合的不规则结构。
改进措施:错层结构在错层处的构件要采取加强措施,如图6.2.10所示,《高规》JGJ3第10.4.4条规定:错层处框架柱的截面高度不应小于600mm,混凝土强度等级不应低于C30,抗震等级应提高一级采用,箍筋应全柱高加密。此条为强制性条文,应严格执行。如果错层处混凝土构件不能满足设计要求,则需采取有效措施。例如框架柱采用型钢混凝土柱或钢管混凝土柱;剪力墙内设置型钢等,可改善构件的抗震性能的措施。

7 框架梁柱节点
7.1 框架梁柱节点
7.1.1 当框架结构的梁、柱混凝土强度等级不同,尤其在高层建筑的底部,柱混凝土强度等级远大于梁时,对梁柱节点核心区的混凝土强度等级及做法未提出施工要求。
原因分析:框架节点核心区在水平荷载作用下承受很大的剪力,易发生剪切脆性破坏。抗震设计时,要求节点核心区不出现明显的剪切裂缝。保证框架节点核心区在与之相交的框架梁、柱钢筋屈服之后产生裂缝。因此,《抗震规范》规定一、二级框架的节点核心区应进行抗震验算,三、四级抗震等级框架的节点核心区应符合抗震构造措施的要求。为方便施工起见,往往先浇捣柱混凝土到梁底标高,再浇捣梁板混凝土。这样,当梁、柱混凝土强度等级不同时,节点核心区混凝土强度等级就低于柱子的混凝土强度等级,有可能造成节点核心区斜截面抗剪强度不够。
改进措施:当框架梁柱的混凝土强度等级不同时,框架梁柱节点核心区的混凝土可按以下原则处理:
以混凝土强度等级级差5N/mm2为一级。
1)柱子混凝土强度等级高于梁板混凝土强度等级不超过一级时,或柱子混凝土强度等级高于梁板混凝土强度等级不超过二级,但节点四周均有框架梁时,节点核心区的混凝土可与梁板相同;
2)柱子混凝土强度等级高于梁板混凝土强度等级不超过二级,且不是节点四周均有框架梁时,节点核心区的混凝土也可与梁板相同,但应按《抗震规范》GB50011附录D进行斜截面承载力验算;
3)当不符合上述规定时,梁柱节点核心区的混凝土宜按柱子混凝土强度等级单独浇筑如图7.1.1-(a),在混凝土初凝前即浇捣梁板混凝土,并加强混凝土的振捣和养护。也可在梁端做水平加腋,以加强对梁柱节点核心区的约束;
4)不符合1)、2)款规定时,也可按图7.1.1-(b)所示的方法,加大核心区面积,并配置附加钢筋。


7.1.2 未注意框架梁柱的节点区因柱截面尺寸较小或为圆柱或梁柱斜交,造成中间层端节点处梁上部纵向钢筋弯折前的水平投影长度小于0.4laE或0.4la,如图7.1.2-l(a)所示,一、二级抗震时,中间层中间节点处梁的纵向受力钢筋穿过柱子的长度小于20d,如图7.l.2-1(b)所示。


改进措施:框架梁纵向受力钢筋在框架节点区内的锚固不满足规范的规定常容易被忽视。
1.在框架中间层的中间节点处,足尺节点试验表明,当非弹性变形变大时,仍不能避免梁端的钢筋屈服区向节点内渗透,贯穿节点的梁筋粘结退化与滑移加剧,从而使框架刚度和耗能性能进一步退化。因此,《混凝土规范》 GB50010第11.6.7条第l款规定:梁内贯穿中柱的每根纵向钢筋直径,对一、二级抗震等级,不宜大于柱在该方向截面尺寸的1/20;对圆柱截面,不宜大于纵向钢筋所在位置柱截面弦长的1/20。
2,在框架中间层的端节点处,《混凝土规范》第11.6.7条第2款规定:当水平直线段锚固长度不足时,梁上部纵向钢筋应伸至柱外边并向下弯折。弯折前的水平投影长度不应小于0.4lae(抗震设计)或0.4la(非抗震设计),弯折后的竖直投影长度取15d,如图7.1.2-2所示。对伸入框架中间层端节点的梁上部钢筋当水平锚固长度不足时,有些设计按1989年版抗震规范在900弯弧内侧加设横向短粗钢筋。但试验证明,这种钢筋只能在水平锚固段发生较大粘结滑移后方能发挥作用,故2001年版抗震规范取消了这种构造做法。当出现本例所说的问题时,可采取下列方法中的一种或几种以满足规范要求:(1)调整梁的纵向受力钢筋布置,使直径较大的钢筋放在梁的中部,直径较小的钢筋放在梁的两侧;(2)加大柱截面尺寸;(3)将梁柱节点区局部加大,按宽扁梁构造设计此节点区,如图7.1.2-2所示;(4)改变柱子方向,使之与梁正交;(5)对个别节点,也可按框架梁铰接在框架柱上进行设计


7.1.3 对框架梁柱节点核心区截面进行抗震验算时,核心区截面有效验算宽度bj一律取验算方向柱截面宽度。
原因分析:节点核心区截面有效验算宽度bj的大小,直接影响节点核心区抗力的大小,bj取值过大,则导致节点核心区抗剪承载能力偏大,造成不安全。
改进措施:《抗震规范》GB50011附录D第D.1.2条规定,核心区截面有效验算宽度,应按下列规定采用:
1,核心区截面有效验算宽度,当验算方向的梁截面宽度不小于该侧柱截面宽度的l/2时,可采用该侧柱截面宽度,当小于柱截面宽度的1/2时,可采用下列二者的较小值:
bj=bb+0.5hc    (7.1.3-1)
bj=bc          (7.1.3-2)
式中  bj——节点核心区的截面有效验算宽度;
    bb——梁截面宽度;
    hc——验算方向的柱截面高度;
    bc——验算方向的柱截面宽度;
2,当梁、柱的中线不重合且偏心距不大于柱宽的1/4时,核心区的截面有效验算宽度可采用上款和下式计算结果的较小值:
bj=0.5(bb+bc)+0.25hc-e    (7.1.3-3)
式中  e——梁与柱中线偏心距。
设计时应按上述规定计算bj。

7.1.4 对非抗震设计的框架顶层节点处钢筋锚固做法,误按《混凝土规范》GB50010第10.4.1条的规定做,即将柱子钢筋伸至柱顶,梁上部纵向钢筋锚入节点。如图7.1.4-1所示。

原因分析:在非抗震设计的框架顶层端节点处的梁端和柱外侧均主要受负弯矩作用,相当于一根弯折900的折梁。图7.l.4-l所示的构造做法,无法保证梁、柱纵向受力钢筋在节点区内的搭接传力,使梁、柱无法发挥出所需的正截面受弯承载力。
改进措施:《混凝土规范》GB50010第10.4.4条规定:框架顶层端节点处,可将柱外侧纵向钢筋的相应部分弯入梁内作梁上部纵向钢筋使用,也可将梁上部纵向钢筋与柱外侧纵向钢筋在顶层端节点及其附近部位搭接。搭接可采用下列方式:
1,搭接接头可沿顶层端节点外侧及梁端顶部布置,如图7.1.4-2(a)所示,接长度搭不应小于1.5la,其中,伸入梁内的柱外侧纵向钢筋截面面积不宜小于柱外侧纵向钢筋全部截面面积的65%;梁宽范围以外的柱外侧纵向钢筋宜沿节点顶部伸至柱内边,当柱纵向钢筋位于柱顶第一层时,至柱内边后宜向下弯折不小于8d后截断;当柱纵向钢筋位于柱顶第二层时,可不向下弯折。当有现浇板且板厚不小于80mm、混凝土强度等级不低于C20时,梁宽范围以外的柱外侧纵向钢筋可伸入现浇板内,其长度与伸入梁内的柱纵向钢筋相同。当外侧柱纵向钢筋配筋率大于1.2%时,伸入梁内的柱纵向钢筋应满足以上规定,且宜分两批截断,其截断点之间的距离不宜小于20d。梁上部纵向钢筋应伸至节点外侧并向下弯至梁下边缘高度后截断。此处,d为柱外侧纵向钢筋的直径。
2,搭接接头也可沿柱顶外侧布置,如图7.l.4-2(b),此时,搭接长度竖直段不应小于l.7la,当梁上部纵向钢筋的配筋率大于l.2%时,弯入柱外侧的梁上部纵向钢筋应满足以上规定的搭接长度,且宜分两批截断,其截断点之间的距离不宜小于20d,d为梁上部纵向钢筋的直径。柱外侧纵向钢筋伸至柱顶后宜向节点内水平弯折,弯折段的水平投影长度不宜小于12d,d为柱外侧纵向钢筋的直径。
上述第一种方法适用于梁上部钢筋和柱外侧钢筋数量不多的民用或公共建筑框架,其优点是有利于在梁底标高设置柱混凝土施工缝。但当梁上部和柱外侧钢筋数量过多时,该方案将造成节点顶部钢筋拥挤,不利于自上而下浇注混凝土。此时,宜改用梁、柱筋直线搭接,接头位于柱顶部外侧的搭接做法,如图7.1.4-2 (b)所示。

8 剪力牆
8.1 剪力墙的计算
8.1.1 抗震设计的板柱-剪力墙结构,仅考虑各层板柱部分应满足计算要求,及应承担不少于各层全部地震作用的20%,而剪力墙部分仅按计算的地震作用设计。
原因分析:纯板柱结构的抗侧力刚度小,延性差,地震作用下柱头极易发生破坏,抗震性能差,故在抗震设计中,均采用板柱-剪力墙结构。按多道设防的原则,《抗震规范》GB500ll第6.6.5条规定:板柱-抗震墙结构的抗震墙,应承担结构的全部地震作用,各层板柱部分应满足计算要求,并应能承担不少于各层全部地震作用的20%。剪力墙仅按满足计算的地震作用设计可能会导致地震作用下剪力墙部分承载能力不足,不能很好地起到第一道防线的作用。
改进措施:应按《抗震规范》第6.6.5条的规定,调整为抗震墙按承担结构的全部地震作用进行设计。

8.1.2 高层建筑不分情况在角部剪力墙上开设转角窗,且未采取有效的加强措施。
原因分析:高层建筑剪力墙结构的角部是结构的关键部位,在角部剪力墙上开设转角窗,实际上是取消了角部的剪力墙肢,代之以角部曲梁,这不仅削弱了结构的整体抗扭刚度和抗侧力刚度,而且邻近洞口的墙肢、连梁内力增大,扭转效应明显。因为角窗的存在破坏了墙体的连续性和整体性,降低了结构的抗扭刚度和抗扭承载力,于结构抗震不利。
改进措施:B级高度及9度设防A级高度的高层建筑不应在角部剪力墙上开设转角窗。抗震设计时,8度及8度以下设防A级高度的高层建筑在角部剪力墙上开设转角窗时,应采取下列措施: (1)洞口应上下对齐,洞口宽度不宜过大,连梁高度不宜过小;(2)洞口两侧应避免采用短肢剪力墙和单片剪力墙,宜采用“T”、“L”、“[”形等截面的墙体,墙厚不应小于200mm,且不应小于层高的1/15,并应沿墙肢全高按要求设置约束边缘构件;(3)宜提高洞口两侧墙肢的抗震等级,并按提高后的抗震等级满足轴压比限值的要求;(4)加强转角窗上转角梁的配筋及构造;(5)转角处楼板应局部加厚,配筋宜适当加大,并配置双层双向的直通受力钢筋;必要时,可于转角处板内设置连接洞口两侧墙体的暗梁;(6)结构电算时,转角梁的负弯矩调幅系数、扭矩折减系数均应取l.0。抗震设计时,应考虑扭转耦联影响。

8.2 剪力墙底部加强部位
8.2.1 高层建筑中,当地下室顶板与室外地坪的高差大于本层层高的1/3时,剪力墙底部加强部位的高度确定不当,取为自地下室顶板向上算起,取底部2层和剪力墙总高度八分之一两者中的大值且不大于15m。
改进措施:剪力墙底部加强部位的高度应根据上部结构的嵌固部位等不同情况分别计算。嵌固部位的确定应遵守《抗震规范》GB50011第6.1.14条的规定。一般情况下,当地下室顶板可以作为上部结构的嵌固部位时,剪力墙底部加强部位的高度应从地下一层顶板向上算起,取结构底部两层和剪力墙总高度八分之一(剪力墙高度超过150m时取1/10)两者中的大值且不大于15m;同时地下一层按加强部位设计。
而当地下室顶板与室外地坪的高差大于本层层高的1/3时,则应是以地下一层底板而不是地下一层顶板作为上部结构的嵌固部位。这种情况下,剪力墙底部加强部位的高度应从地下一层底板向上算起,取底部两层和剪力墙总高度八分之一两者中的大值且不大于15m;同时从地下一层底板向下延伸一层按加强部位设计。
此外,当由于地下室顶板大部分板面标高下降、开大洞、或车库(墙体少)等原因,不能满足地下一层顶板作为结构嵌固部位时,剪力墙底部加强部位的高度也应从地下一层底板(为嵌固部位时)向上算起,取底部两层和剪力墙总高度八分之一两者中的大值且不大于15m;同时地下一层底板向下延伸一层按加强部位设计。

8.2.2 部分框支剪力墙底部加强部位的高度不满足规范要求。
原因分析:部分框支剪力墙结构传力不直接、不合理,结构竖向刚度变化很大,甚至是突变,地震作用下易使框支—剪力墙结构在转换层附近的刚度、内力和传力途径发生突变,并易形成薄弱层。转换层下部的框支结构构件容易开裂和屈服,转换层上部的墙体易于破坏,于抗震不利,部分框支剪力墙底部加强部位的高度取法出错一般有以下几种情况:1)仅对落地剪力墙按规范取其底部加强部位高度;2)仅对框支剪力墙按规范取其底部加强部位高度、对落地剪力墙仅取其墙肢总高度的1/8;3)其他。
改进措施:《高规》JGJ3第10.2.4条规定:底部带转换层的高层建筑结构,其剪力墙底部加强部位的高度可取框支层加上框支层以上两层的高度及墙肢总高度的1/8二者的较大值。执行此条应特别注意:这里所说的剪力墙包括落地剪力墙和转换构件上部的剪力墙两者。

8.3 剪力墙厚度及截面高度
8.3.1 较长的剪力墙未开设结构洞,致使结构受力不合理。
原因分析:剪力墙结构的一个结构单元中,当有少量长度大于8m的大墙肢时,计算中楼层剪力主要由这些大墙肢承受,其他墙肢承受的剪力较小,一旦发生地震,尤其高烈度地震时,大墙肢容易首先遭受破坏,而小的墙肢的承载力有限,使整个结构的各墙肢可能被各个击破,这对结构是极为不利的。同时,细高的剪力墙(高宽比大于2)容易设计成弯曲破坏的延性剪力墙,从而可避免脆性的剪切破坏。因此,《高规》JGJ3第7.1.5条规定:较长的剪力墙宜开设洞口,将其分成长度较为均匀的若干墙段,墙段之间宜采用弱连梁(跨高比宜大于6的连梁)连接,每个独立墙段的总高度与其截面高度之比不应小于2。独立墙段宜通过设置门窗洞口或结构洞使洞口间的墙
肢截面高度不宜大于8m。较短墙肢受弯产生的裂缝较小,墙体的配筋能较充分发挥作用,有利于改善结构的抗震性能。
改进措施:当墙肢长度超过8m时,应在墙肢上适当部位开设结构洞,把长墙肢分成短墙肢如图8.3.1所示,结构计算按开洞处理。结构洞周边按规定设置连梁及边缘构件,洞口砌筑填充墙类轻质材料封堵。但因填充墙与混凝土墙两种不同材料,可能会因收缩使洞口处墙体出现裂缝,此时应在装修时采取防裂措施。

8.3.2 (1)剪力墙底部加强部位的厚度不满足要求,且未计算墙体稳定;(2)无端柱或翼墙的一字形墙厚度不满足要求,且未计算墙体稳定。
改进措施:(1)底部加强部位剪力墙厚度:一、二级不应小于层高或剪力墙无肢长度的1/16,且不应小于200mm;三、四级不应小于层高或剪力墙无肢长度的1/20,且不应小于160mm;(2)无端柱或翼墙的一字形剪力墙厚度:底部加强部位不应小于层高的1/12,其他部位不应小于层高的1/15,且不应小于180mm;
剪力墙厚度的详细要求见《抗震规范》GB5001l第6.4.l条及《高规》JGJ3第7.2.2条规定,当不满足要求时,应按《高规》附录D计算墙体的稳定。剪力墙井筒中分隔电梯井或管井的墙肢截面厚度可适当减小,但不宜小于160mm。

8.4 翼墙、端柱、暗梁及连梁
8.4.1 抗震设计时连梁箍筋未沿全跨长加密。
原因分析:剪力墙开洞形成的连梁,一般跨高比不大于5。这类连梁和框架梁不同,连梁在竖向荷载作用下弯距所占比例较小,水平荷载作用下产生的正负弯距使连梁对剪切变形十分敏感,容易出现剪切斜裂缝,为防止斜裂缝出现后的脆性破坏,规范除采取了强剪弱弯的一些措施外,在钢筋锚固、腰筋配置、箍筋加密区范围等构造上还规定了一些特殊要求。其中《高规》第7.2.6条规定了“抗震设计时,沿连梁全长箍筋的构造应按第6.3.2条框架梁梁端加密区箍筋的构造要求采用;非抗震设计时,沿连梁全长的箍筋直径不应小于6mm,间距不应大于150mm。”
改进措施:连梁不应按一般框架梁仅在梁端一定范围内箍筋加密,应按《高规》第7.2.26条(强制性条文)规定设计。

8.4.2 抗震设计时剪力墙连梁截面尺寸控制条件不满足《高规》规定,且未采取合适的处理措施。
原因分析:规范规定剪力墙连梁应满足截面尺寸控制条件,其目的首先是防止发生斜压破坏(或腹板压坏),其次是限制在使用阶段的斜裂缝宽度,同时也是斜截面受剪破坏的最大配箍率的条件。
连梁由于跨度小而截面高度较大,水平荷载作用下梁端剪力也较大,因而容易出现截面控制条件不满足规定的情况,若不采取合适的处理措施会造成连梁斜裂缝过大甚至发生斜压破坏。
改进措施:当剪力墙连梁不满足截面尺寸控制条件的要求时,可按《高规》第7.2.25条作如下处理:
(1)减小连梁截面高度,连梁名义剪应力超过限制值时,加大截面高度会吸引更多剪力,更为不利,减小截面高度或加大截面厚度效果较好,但后者一般很难实现。
(2)抗震设计的剪力墙中连梁弯矩及剪力可进行塑性调幅,以降低其剪力设计值。连梁塑性调幅可采用两种方法,一是在内力计算前就将连梁刚度进行折减;二是在内力计算之后,将连梁弯矩和剪力组合值乘以折减系数。两种方法的效果都是减小连梁内力和配筋。因此在内力计算时对已经降低了刚度的连梁,其调幅范围应当限制或不再继续调幅。当部分连梁降低弯矩设计值后,其余部位连梁和墙肢的设计值应当相应提高。
    无论用什么方法,连梁调幅后的弯矩、剪力设计值不应低于使用状况下的数值,也不宜低于比设防烈度低一度的地震作用组合所得的弯矩设计值,其目的是避免在正常使用条件下或较小的地震作用下连梁上出现过大的裂缝。因此建议一般情况下,可掌握调幅后的弯矩不小于调幅前弯矩(完全弹性)的0.8倍(6—7度)和0,5倍(8—9度)。
(3)当连梁破坏对承受竖向荷载无明显影响时,可考虑在大震作用下该连梁不参与工作,按独立墙肢第二次进行多遇地震作用下结构内力分析,墙肢应按两次计算所得的较大内力进行配筋设计。

8.4.3 剪力墙结构、框架-剪力墙结构和框架-核心筒结构,在布置楼面主梁时,未注意避开剪力墙连梁而将主梁支承在连梁上。
原因分析:剪力墙结构、框架-剪力墙结构和框架-核心筒结构的剪力墙中的连梁刚度较弱,将楼层主梁支承在连梁上,第一,连梁没有足够的抗扭刚度对主梁端部约束达不到固结要求,也没有足够的抗扭刚度去抵抗平面外弯矩(扭矩);第二因连梁本身剪切应变较大,再增加主梁传来的内力易使连梁产生过大裂缝。在强震下连梁作为第一道防线可能首先破坏,造成支承在连梁上的主梁也会随之破坏。
改进措施:按《高规》JGJ3第7.1.10条的规定,应尽量避免将楼面主梁支承在连梁上。尤其当楼面主梁数量较多时应调整有关主梁或(和)竖向构件的平面布置。当有个别楼层主梁支承在连梁上时,可将主梁端部设为铰接,并根据情况加大连梁的配筋及构造。

8.4.4 板柱-剪力墙结构房屋周边和楼电梯周边未设置有梁框架。
原因分析:板柱结构的抗侧力刚度比梁柱框架结构差,板柱节点的抗震性能不如梁柱节点的抗震性能。楼板对柱的约束弱,不像框架梁那样,既能较好地约束框架节点,做到强节点,又能使塑性铰出现在梁端,做到强柱弱梁。此外,地震作用产生的不平衡弯矩要由板柱节点传递,在柱边将产生较大的附加剪应力,当剪应力很大而又缺乏有效的抗剪措施时,有可能发生冲切破坏,甚至导致结构连续破坏。因此,抗震设计时,除应设置剪力墙外,还应尽可能设置有梁框架。
改进措施:《抗震规范》GB5001l第6.6.2条规定:房屋的周边和楼、电梯洞口周边应采用有梁框架;此外第6.6.4条还规定:房屋的屋盖和地下一层顶板,宜采用梁板结构。对前一条,应遵照执行,对后一条,应尽可能做到。

8.4.5 框架-剪力墙结构中,与框架平面重合的剪力墙未设置端柱和梁(暗梁)。
原因分析:框架-剪力墙结构中,剪力墙的布置形式有多种多样。框架和剪力墙既可分开布置,也可混合布置,还可以在框架结构的若干跨内嵌入剪力墙,成为带边框剪力墙。带边框的剪力墙应保留框架柱,位于楼层标高处的框架梁也应保留,使剪力墙受到纵横两个方向的约束,提高剪力墙的延性和耗能能力。框架-剪力墙结构中的带边框剪力墙是该类结构中的主要抗侧力构件,它承受着大部分地震作用。对比试验表明,无边框的剪力墙的正截面及斜截面受力性能、变形能力均减弱较多。为保证其延性和承载力,规范对边框柱和边框梁的设计作了具体规定。
改进措施:《高规》JGJ3第8,2,2条规定:与剪力墙重合的框架梁可保留,亦可做成宽度与墙厚相同的暗梁,暗梁截面高度可取墙厚的2倍或与该框架梁截面等高,暗梁的配筋可按构造配置且应符合一般框架梁相应抗震等级的最小配筋要求;剪力墙截面宜按工字形设计,其端部的纵向受力钢筋应配置在边框柱截面内;边框柱截面宜与该榀框架其他柱的截面相同,边框柱应符合有关框架柱构造配筋规定;剪力墙底部加强部位边框柱的箍筋宜沿全高加密;当带边框剪力墙上的洞口紧邻边框柱时,边框柱的箍筋宜全高加密。

需要注意的是:(1)与剪力墙平面重合的框架梁宜通过剪力墙,或在剪力墙内设置暗梁;而与框架平面不重合的剪力墙内是否设置暗梁,可根据结构具体情况而定。
(2)单片剪力墙中的边框柱,是墙平面内墙体的组成部分,不再按框架柱考虑;此类边框柱在墙平面外属于框架柱,支承框架梁并共同组成抗侧力结构。边框柱在墙平面内按墙计算确定纵向钢筋,平面外则按框架柱计算纵向钢筋,并满足相应的构造措施。

8.5 剪力墙边缘构件
8.5.1 如图8.5.1-l所示,二级抗震设计的剪力墙约束边缘构件沿墙肢长度取值不正确。如取lc=550mm。

原因分析:剪力墙约束边缘构件沿墙肢长度lc应按《高规》JGJ3表7.2.16计算。图8.5.1-1剪力墙按有翼墙或端柱一栏计算时,有lc=0.15h0=0.15x3500mm=525mm,并考虑表注2:“约束边缘构件沿墙肢长度,不应小于表中数值、1.5bw和450mm三者的较大值;有翼墙或端柱时尚不应小于翼墙厚度或端柱沿墙肢方向截面高度加300mm”,取lc=250mm+300mm=550mm。但表7.2.16注3规定:“翼墙长度小于其厚度3倍或端柱截面边长小于墙厚的2倍时,视为无翼墙或无端柱”。图8.5.1-1中的剪力墙翼墙长度每侧仅400mm,小于其3倍厚度,因此,应视为无翼墙。
改进措施:按无翼墙或端柱一栏计算,即lc=max(0.20hw,1,5bw,450mm)=0,20x3500mm=700mm。

8.5.2 抗震设计时筒体结构的内筒墙体完全按一般剪力墙结构设置约束边缘构件。如角部未沿墙体全高设置约束边缘构件,约束边缘构件长度lc不满足要求,底部加强部位约束边缘构件范围内未全部采用箍筋等。
原因分析:筒体结构的空间整体作用很强,核心筒或内筒是筒体结构的主要承重和抗震的结构构件。筒体角部又是保证结构空间整体作用的关键部位,其边缘构件构造措施应比一般剪力墙结构更强。
改进措施:《高规》JGJ3第9.1.8条规定:框架-核心筒结构的核心筒角部边缘构件应按下列要求予以加强:底部加强部位,约束边缘构件沿墙肢的长度应取墙肢截面高度的l/4,约束边缘构件范围内应全部采用箍筋;其底部加强部位以上的全高范围内宜按《高规》第7.2.16条的规定设置约束边缘构件。
设计时应注意筒体结构的内筒角部和一般剪力墙结构在设置约束边缘构件及约束边缘构件构造做法上的区别,并满足规范的规定。

8.6 剪力墙配筋构造
8.6.1 高层建筑抗震设计时,剪力墙开洞后形成如图8.6.l所示的小墙肢,但仍按普通剪力墙进行设计。

原因分析:如图8.6.1所示的小墙肢截面高度与厚度之比小于5,其抗侧力刚度更弱,抗震性能更差,应采取加强措施,
改进措施:首先应尽可能避免在剪力墙同一十字交叉墙肢上开设3个以上洞口而形成独立小墙肢。当结构中有极少数此种墙肢时,开洞后形成的十字交叉墙应按仅承受轴向力进行设计。其重力荷载代表值作用下的轴压比宜满足表8.6.1的要求,并宜按框架柱进行截面设计,底部加强部位纵向钢筋的配筋率不应小于l.2%,一般部位不应小于1.0%,箍筋宜沿墙肢全高加密,详见《高规》第7.2.5条。
表8.6.1  剪力墙独立小墙肢轴压比限值
抗震等级        一级(9度)        一级(7、8度)        二级        三级
轴压比        0.3        0.4        0.5        0.6




8.6.2 剪力墙墙肢与其平面外方向的楼面主梁连接时,梁端与剪力墙按固接设计而未采取其他措施。
原因分析:剪力墙平面外刚度远小于平面内刚度,平面外抗弯能力很小,楼面主梁梁端与剪力墙按固接(特别是仅在墙的一侧连接)时,使得剪力墙平面外产生很大的弯矩,当超过剪力墙平面外的抗弯能力时,会造成墙体开裂甚至破坏。在很多情况下,剪力墙平面外受力的问题未引起结构设计人员的足够重视,因而没有采取相应的措施。
改进措施:应控制剪力墙平面外的弯矩。当剪力墙墙肢与其平面外方向的楼面梁连接时,为减小梁端部弯矩对墙的不利影响,按《高规》JGJ3第7.1.7条的规定,应至少采取以下措施之一:
(1)沿梁轴线方向设置与梁相连的剪力墙,以抵抗该墙肢平面外弯矩,如图8.6.2(a)所示;
(2)当不能设置与梁轴线方向相连的剪力墙时,宜在墙与梁相交处设置扶壁柱,扶壁柱宜按计算确定其截面及配筋,如图8.6.2(b)所示;
(3)当不能设置扶壁柱时,应在墙与梁相交处设置暗柱,并宜按计算确定其截面及配筋,如图8.6.2(c)所示;
(4)必要时,剪力墙内可设置型钢,如图8.6.2(d)所示;
(5)对截面较小的楼面梁一般可将梁与墙的连接做成铰接,并宜在墙梁相交处设置构造暗柱;
(6)将楼面梁设计成变截面梁,减小梁端截面以减小梁端弯矩;
(7)通过调幅减小梁端弯矩,相应加大梁跨中弯矩。
无论采取上述哪种措施,都应保证梁的纵向受力钢筋伸入墙内并有可靠锚固。

8.6.3 高层建筑当剪力墙厚度大于400mm时,竖向和水平分布钢筋仍采用两排配筋。墙体各排分布筋之间未设置拉结筋。
原因分析:为防止混凝土表面出现收缩裂缝,同时使剪力墙具有一定的出平面抗弯能力,高层建筑的剪力墙不允许单排配筋。当剪力墙厚度超过400mm时,如仅采用双排配筋,形成中间大面积的素混凝土,会使剪力墙截面应力分布不均匀。因此,《高规》JGJ3第7.2.3条规定:高层剪力墙中竖向和水平分布钢筋,不应采用单排配筋。当剪力墙截面厚度bw不大于400mm时,可采用双排配筋;当bw大于400mm,但不大于700mm时,宜采用三排配筋;当bw大于700mm时,宜采用四排配筋。受力钢筋可均匀分布成数排。各排分布钢筋之间的拉筋间距不应大于600mm,直径不小于6mm,在底部加强部位,约束边缘构件以外的拉接筋间距尚应适当加密。
改进措施:应按规范执行,如图8.6.4所示。当采用三排或四排配筋时,所需的设计配筋可均匀分布在各排中,或靠墙面的配筋略大。

9 其他
9.1 其他
9.1.1 在框架结构中,当雨蓬板和楼层板不能整体现浇时,仅将雨蓬梁(或板)支承在框架的填充墙上。
原因分析:钢筋混凝土雨蓬的设计主要有三个问题:一是雨蓬梁及雨蓬板的承载能力和变形要求;二是雨蓬的整体抗倾覆;三是对砌体结构,要验算雨蓬梁支承处砌体的局部受压承载能力。造成此类问题的根本原因是错按砌体结构设计雨蓬,实际上框架结构中雨蓬设计和砌体结构中雨蓬设计有很大区别,因为在框架结构中,砌体填充墙是非承重墙体,既不能支承雨蓬梁(或板)的荷载,也不能象砌体结构的墙体那样,可以平衡雨蓬板的固端弯矩,防止雨蓬的整体倾覆。仅将雨蓬梁(或板)支承在框架的填充墙上,虽然雨蓬本身的承载能力和变形满足要求,但雨蓬的整体抗倾覆和填充墙的局部受压强度都可能不满足要求。
改进措施:一般框架结构中雨蓬的设计,应注意以下问题:
(1)当雨蓬板和框架梁标高接近时,应使两者整体浇灌;
(2)当雨蓬板和框架梁标高相差较大两者无法整体浇灌时,若雨蓬所在跨跨度不大,可将雨蓬梁向两侧延伸至框架柱,雨蓬梁按弯剪扭构件设计,框架柱的设计应考虑雨蓬梁传来的集中弯矩和集中力,如图9.1.1-1所示。因设置此雨蓬梁而使框架柱形成短柱时,柱箍筋应全高加密;若雨蓬所在跨跨度较大,可在雨蓬梁两端设置小门樘柱,小门樘柱上端伸入框架梁内,雨蓬梁按弯剪扭构件设计,小门樘柱按偏压构件设计,如图9.1.l-2所示。


9.1.2 忽视砌体填充墙的布置,设计中未考虑由于填充墙布置的不均匀、不对称或上下层刚度差异过大所造成的不利影响。
原因分析:填充墙与框架刚性连接时,其对结构的整体刚度是有影响的,填充墙布置严重不均匀或不对称,会使结构形成刚度和强度突变,于抗震不利。例如:由于功能需要,将填充墙仅布置在结构平面的一侧时,结构可能会产生不容忽视的偏心;结构某一楼层或几个楼层无填充墙,而其他楼层均布置较多填充墙时,结构的上下层刚度差异可能过大等。
改进措施:首先填充墙平面和竖向布置应尽可能均匀、对称,减少质心和刚心的偏心所造成的扭转,避免形成上下层刚度差异过大。其次,当不可避免时,由于目前一般软件在计算中都没有考虑这些问题,因此,应从概念设计出发,正确估算结构由此产生的扭转或上下层刚度差异,采取切实可靠的构造措施来减小由于填充墙布置的不均匀、不对称而产生的结构偏心或上下层刚度差异过大所造成的不利影响。

9.1.3 对框架结构的填充墙、隔墙未采取与主体结构可靠的拉接措施及保证墙体平面外的稳定措施。
原因分析:历次地震框架结构由于填充墙引起的震害并不少见,切不可等闲视之。
改进措施:1,框架结构的填充墙及隔墙应尽可能选用轻质墙体以减轻自重。
2.填充墙与主体结构应有可靠拉接,应能适应主体结构不同方向的层间位移;8、9度时应具有满足层间变位的变形能力,与悬挑构件相连接时,尚应满足节点转动引起的竖向变形能力。
3,抗震设计时,框架结构如采用砌体填充墙,宜与柱脱开或采用柔性连接,并应符合下列要求:
(1)砌体砂浆强度等级不应低于M5,墙顶应与框架梁或楼板紧密结合。
(2)砌体填充墙应沿框架柱的高度每隔500mm左右设置2?6的拉筋,拉筋伸入填充墙内的长度:6、7度时不应小于墙长的1/5且不小于700mm;8、9度时宜沿墙全长贯通。
(3)墙长大于5m时,墙顶与梁(板)宜有钢筋拉结;墙长超过层高2倍时,宜设置钢筋混凝土构造柱;墙高超过4m时,墙体半高处(或门窗洞口上皮)宜设置与柱连接且沿墙全长贯通的钢筋混凝土水平系梁。

9.1.4 抗震设计的高层建筑采用单跨框架结构。
原因分析:单跨框架的抗侧刚度小,耗能能力弱,结构超静定次数少,抗震时无多道防线。一旦柱子出现塑性铰(在强震下不可避免),连续倒塌的可能性很大。震害表明,单跨框架结构震害较重(包括多层)。
改进措施:抗震设计的高层建筑不宜采用单跨框架结构。
如可能,可于单跨框架结构中设置少量剪力墙,使之成为框架-剪力墙结构,有剪力墙作为第一道防线,结构的抗震能力将得以加强。当由于功能要求只能做成单跨框架结构时,应按建设部建质[2003]46号文中规定进行抗震设防专项审查,按审查意见设计。

9.1.5 复合受力预埋件,如弯剪预埋件,锚筋受拉又受剪,既未按受拉锚筋确定所需锚固长度,也未按受剪锚筋确定其沿剪力方向的间距。
原因分析:工程中,为了把构件与构件或构件与设备连接起来,经常会遇到预埋件的设计问题。
按受力性能分,预埋件可分为轴心受拉预埋件、受剪预埋件、弯剪预埋件、拉弯剪预埋件和压弯剪预埋件等多种。
某工程框架柱上复合受力的弯剪预埋件如图10.1.3(a)所示。框架柱的混凝土强度等级为C30;预埋件的锚板采用Q235-B级钢板,锚筋采用HRB335级钢筋(?),手工电弧焊焊条采用E4303型焊条。
由图可知,预埋件除锚筋中心至锚板边缘的距离不应小于2d(d为锚筋直径,下同)和20mm,锚筋的列距、锚筋至混凝土构件侧边的距离均不应小于3d和45mm,受剪预埋件锚筋至混凝土构件下边缘的距离不应小于6d和70mm,四项构造尺寸符合《混凝土规范》GB50010第10.9.6条的要求外,其余构造要求均不符合规范的规定。
改进措施:由于预埋件破坏,连接失效,构件或设备坠落造成工程事故的例子并不是个别的。因此,结构工程师们应重视受力预埋件的设计和计算。
应进行修改。例如:
(1)锚筋与锚板的角焊缝焊脚尺寸不宜小于0.6d=0.6x16=9.6mm,实际的hf=8mm;
(2)锚板厚度宜大于锚筋直径的0.6倍,0.6d=0.6x16=9.6mm,锚板实际厚度为8mm;
(3)受剪预埋件锚筋沿剪力方向的间距不应小于6d=6x16=96mm和70mm,锚筋实际间距为80mm。
(4)弯剪预埋件锚筋的锚固长度不应小于受拉钢筋的锚固长度la=30d=30x16=480mm,锚筋实际锚固长度为250mm。弯剪预埋件不应按受剪预埋件确定锚筋的锚固长度。
修改后的弯剪预埋件如图9.1.s(b)所示。
工程经验表明,对于受力预埋件,除了应按照《混凝土规范》第10.9.l条的相关公式计算锚筋总截面面积外,还必须有相应的构造措施作保证。由于影响预埋件受力的因素很多,计算预埋件锚筋总截面面积的上述公式又是半理论半经验性的,故预埋件的设计应留有必要的安全储备。通常,当被连接构件的安全等级为一级时,预埋件的重要性系数可取 1.2;当被连接构件的安全等级为二级时,预埋件的重要性系数可取1.1。
考虑地震作用效应参与组合的预埋件,应按《混凝上规范》第11.6.9条设计,锚筋截面面积应比非地震作用组合增大25%,且相应调整锚板厚度。
抗震设计时,在靠近锚板的锚筋根部宜增设一根直径d≥?10的封闭箍筋,并与锚筋贴紧扎牢,此时受拉锚筋的锚固长度相应改为laE。
应当指出,预埋件直锚筋与锚板应采用T型焊,当锚筋直径不大于20mm时,宜采用压力埋弧焊(焊剂为HJ431型焊剂),大于20mm时,宜采用穿孔塞焊。
设计选用详见国家标准图集《钢筋混凝土结构预埋件》04G362。

(正文完)

主编单位、联系人及电话:
主编单位:中元国际工程设计研究院、张军、010-68732518
     中国建筑标准设计研究院、汪洪涛、010-88361155-800
     中国建筑科学研究院建筑结构研究所、黄小坤、010-84280894

图集主审人(以姓氏笔划为序):沙志国、张维斌、姜学诗

组织编制单位、联系人及电话:中国建筑标准设计研究院、李文扬、
                     010-88361155-800(国标图热线电话)
                     010-68318822(发行电话)

民用建筑工程设计常见问题分析及图示[/COLOR]
论坛插件加载方法
发帖求助前要善用【论坛搜索】功能,那里可能会有你要找的答案;
如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子标题加上【已解决】;
如何回报帮助你解决问题的坛友,一个好办法就是给对方加【D豆】,加分不会扣除自己的积分,做一个热心并受欢迎的人!

已领礼包: 6809个

财富等级: 富甲天下

发表于 2006-7-26 13:41:20 | 显示全部楼层
好贴,楼主加油!!!
论坛插件加载方法
发帖求助前要善用【论坛搜索】功能,那里可能会有你要找的答案;
如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子标题加上【已解决】;
如何回报帮助你解决问题的坛友,一个好办法就是给对方加【D豆】,加分不会扣除自己的积分,做一个热心并受欢迎的人!
回复 支持 反对

使用道具 举报

发表于 2008-1-3 14:33:18 | 显示全部楼层
好东西。楼主太感谢了。希望能有系列出来。
论坛插件加载方法
发帖求助前要善用【论坛搜索】功能,那里可能会有你要找的答案;
如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子标题加上【已解决】;
如何回报帮助你解决问题的坛友,一个好办法就是给对方加【D豆】,加分不会扣除自己的积分,做一个热心并受欢迎的人!
回复 支持 反对

使用道具 举报

发表于 2009-5-17 20:03:52 | 显示全部楼层
大三了,看了还是朦朦懂?不懂!很沮丧!!!!
论坛插件加载方法
发帖求助前要善用【论坛搜索】功能,那里可能会有你要找的答案;
如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子标题加上【已解决】;
如何回报帮助你解决问题的坛友,一个好办法就是给对方加【D豆】,加分不会扣除自己的积分,做一个热心并受欢迎的人!
回复 支持 反对

使用道具 举报

发表于 2009-5-25 14:37:05 | 显示全部楼层
楼主提供的资料不错,非常非常感谢楼主的提供---:victory: ----:time: --:handshake ---:call: ------------------------------
论坛插件加载方法
发帖求助前要善用【论坛搜索】功能,那里可能会有你要找的答案;
如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子标题加上【已解决】;
如何回报帮助你解决问题的坛友,一个好办法就是给对方加【D豆】,加分不会扣除自己的积分,做一个热心并受欢迎的人!
回复 支持 反对

使用道具 举报

发表于 2009-6-2 18:00:49 | 显示全部楼层
我现在正在学习结构,这篇文章让我收益非浅。
论坛插件加载方法
发帖求助前要善用【论坛搜索】功能,那里可能会有你要找的答案;
如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子标题加上【已解决】;
如何回报帮助你解决问题的坛友,一个好办法就是给对方加【D豆】,加分不会扣除自己的积分,做一个热心并受欢迎的人!
回复 支持 反对

使用道具 举报

发表于 2009-6-10 21:04:00 | 显示全部楼层
非常好的东西,不错啊!
论坛插件加载方法
发帖求助前要善用【论坛搜索】功能,那里可能会有你要找的答案;
如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子标题加上【已解决】;
如何回报帮助你解决问题的坛友,一个好办法就是给对方加【D豆】,加分不会扣除自己的积分,做一个热心并受欢迎的人!
回复 支持 反对

使用道具 举报

发表于 2009-9-5 15:09:09 | 显示全部楼层
有钢结构吗?
论坛插件加载方法
发帖求助前要善用【论坛搜索】功能,那里可能会有你要找的答案;
如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子标题加上【已解决】;
如何回报帮助你解决问题的坛友,一个好办法就是给对方加【D豆】,加分不会扣除自己的积分,做一个热心并受欢迎的人!
回复 支持 反对

使用道具 举报

发表于 2009-9-9 13:27:17 | 显示全部楼层
不错,很好很实用!
论坛插件加载方法
发帖求助前要善用【论坛搜索】功能,那里可能会有你要找的答案;
如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子标题加上【已解决】;
如何回报帮助你解决问题的坛友,一个好办法就是给对方加【D豆】,加分不会扣除自己的积分,做一个热心并受欢迎的人!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|申请友链|Archiver|手机版|小黑屋|辽公网安备|晓东CAD家园 ( 辽ICP备15016793号 )

GMT+8, 2024-11-17 21:23 , Processed in 0.251140 second(s), 47 queries , Gzip On.

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表