找回密码
 立即注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 1422|回复: 0

弹性力学经典解法与有限元法的不同特点

[复制链接]
发表于 2016-3-1 14:38:04 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?立即注册

×
  弹性力学的任务是研究弹性体在外力作用卜而产生应力、应变和位移的规律。解弹性力学问题,必须考虑平衡微分方程、几何方程、物理方程和边界条件。问题归结为偏微分方程的边值问题。
  以平面弹性力学问题为例,弹性力学的基本方程共8个:2个平衡方程,3个几何方程,3个物理方程。这8个基本方程中包含8个未知函数.即:2个位移分星,3个应变分量,3个应力分量。基本方程的数目等于未知函数的数目。弹性力学的任务,就是在适当的边界条件下,从基本方程中求解这些未知函数。
  弹性力学问题的基本解法有三种.即按位移求解、按应力求解和混合求解。用弹性力学经典解法解决实际问题的主要困难在于求解偏微分方程的复杂性。区域内各点的位移、应变、应力都是待求的,因此未知数有无穷多个。所求解满足弹性力学基本方程的位移函数、应变函数、应力函数的表达式要ff盖整个区域,而且还要满足边界条件.因此求解这样的函数形式是十分困难的。
  有限元法
  有限元法是近40年来随着电子计算机的广泛应用而发展起来的一种数位方法。它具有极大的通用性和灵活性,可以用来求解弹性力学中的各种复杂边界问题。
  用有限元法分析弹性力学问题,首先是把原来连续的弹性体离散化。如图I ,采用最简单的三角形单元对弹性体进行分割,形成一个如图1-l b所示的单元集合体。
  图片
  对于每个三角形单元,可选择最简单的线性函数为位移模式,即分片插伍的方法J单元中任一点的位移可通过3个结点的位移进行插值计算。因此,整个区域中无穷多个未知位移且可以用有限多个结点位移来表示。这样就避免1求解汉盖整个区域的位移函数的困难。
  用三角形单元的结点位移,可以表示单元中的应变、应力、结点力。将各个单元集合成离敞化的结构模型进行整体分析,问题最后归结为求解以结点位移为未知量的线性方程组。有限元法中求解这种线性方程组比弹性力学经典解法中求解偏微分方程要容易得多。
  更多详情请扫描元计算官方微信二维码获得更多资讯
QQ图片20160226105553.jpg

论坛插件加载方法
发帖求助前要善用【论坛搜索】功能,那里可能会有你要找的答案;
如果你在论坛求助问题,并且已经从坛友或者管理的回复中解决了问题,请把帖子标题加上【已解决】;
如何回报帮助你解决问题的坛友,一个好办法就是给对方加【D豆】,加分不会扣除自己的积分,做一个热心并受欢迎的人!
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|申请友链|Archiver|手机版|小黑屋|辽公网安备|晓东CAD家园 ( 辽ICP备15016793号 )

GMT+8, 2024-12-20 20:20 , Processed in 0.388812 second(s), 34 queries , Gzip On.

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表